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Abstract

This paper identifies mechanisms that are implementable even when the planner
cannot commit to the rules of the mechanism. The standard approach is to require
mechanism to be robust against redesign. This often leads nonexistence of acceptable
mechanisms. The novelty of this paper to require robustness against redesigns that
are themselves robust against redesigns that are themselves robust against... . That
is, we allow the planner to costlessly redesign the mechanism any number of times,
and identify redesign strategies that are both optimal and dynamically consistent.
A mechanism design strategy that credibly implements a direct mechanism after
all histories is shown to exist. The framework is applied to bilateral bargaining
situations. We demonstrate that a welfare maximizing second best mechanism can
be implemented even without commitment.
Keywords: mechanisms, commitment, consistency, optimality, bilateral bargain-

ing.
JEL: C72, D44, D78.

1 Introduction

Mechanism design theory provides powerful tools for the planner to implement desired
outcomes in collective choice situations with incomplete information. However, the the-
ory relies on an assumption that is both limiting and, at times, unreasonable: that
the planner herself can commit to the mechanism. This assumption is crucial since the
incentive compatibility of the mechanism requires that it is played as planned. What
exacerbates the problem is that the optimality properties of the mechanism may change
when information is being revealed during the play. Hence, given ex post information,
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another continuation mechanism may begin to dominate the original mechanism and the
planner is tempted to change the rules of the game.

In the literature on commitment in mechanism design, the usual approach is to appeal
to the incrutability principle (Myerson 1991, 1979) by assuming that parties anticipate
how the mechanism will be redesigned. As in Neeman and Pavlov (2012), the foreseen
renegotiation can then be incorporated into the original mechanism, and the attention
can be limited to mechanisms that are robust against ex post renegotiation.1

Renegotiation-proofness is not, however, an entirely satisfactorily concept. The prob-
lem is that it is often too restrictive. For example, in private valuations environment it
admits only ex post effi cient mechanisms (Neeman and Pavlov, 2012). Hence, not all
set-ups support a renegotiation-proof mechanism, as the next canonical example demon-
strates.

Consider the case of bilateral bargaining. There is a single indivisible good, a
buyer, and a seller. Agents’privately known valuations are independently drawn from
an interval. By the remarkable result of Myerson and Satterthwaite (1983), there is
no incentive compatible, individually rational, and budget balanced mechanism that
allocates the good to the agent with the highest valuation. Thus any feasible mech-
anism occasionally implements the ineffi cient no-trade outcome. But then the agents
are tempted to renegotiate the mechanism rather than follow its instructions whenever
no-trade outcome should materialize.

Renegotiation-proofness may thus be thought as a suffi cient but not necessary con-
dition for mechanisms that are implementable without commitment. The conceptual
problem with renegotiation-proofness is that it permits all blocking mechanisms, even
those that are not themselves credible. The natural way to restrict redesigns is to ask
also the new mechanisms to be robust against renegotiation, when exposed to the same
criterion as the original mechanism. This approach - the theme of this paper - provides
a consistent way to close the gap between the necessary and suffi cient conditions for
mechanisms without commitment.

This paper develops a framework to identify implementable mechanisms when the
planner cannot commit to the mechanism. Instead, she is permitted to redesign the
mechanism any number of times. The key idea is to require robustness against redesigns
that are themselves robust against redesigns that are themselves robust against... . The
framework is portable to any mechanism design scenario. The structural assumptions
that guarantee the existence of the solution are that the agents’ type sets are finite
and that their preferences exhibit value distinction (no pure belief types). We put no
restrictions (except continuity) on the preferences of the planner.

As the starting point we take the observation that potential redesigns take place in
sequential order and, hence, can be thought as a strategy. We identify redesign strategies
that are dynamically consistent. By appealing to the inscrutability principle, our research
strategy is to reduce, after each history, the continuation equilibria to a single direct

1See also Forges (1995) and Dewatripont (1989). Other contributions on mechanism design without
commitment include Segal and Whinston (2002),Freixas et al. (1985), McAfee and Vincent (1997),
Baliga and Sjöström (1997), Bester and Strautz (2001), Skreta (2006, 2011), and Vartiainen (2012).
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incentive compatible mechanism.2 In order to do this, we separate the two tasks of
a mechanism: information processing and implementation. An information processing
device generates a public signal on the basis of the agents’reports, and simulates the
information flow in the continuation game.3 An implementation device then reflects
what outcomes are implemented on the basis of revealed information. That is, after
communication has been taken place via an information processing device, the planner
reconsiders whether to implement the outcome suggested by the implementation device,
or to design a new mechanism given the posterior information. Hence she cannot commit
to the implementation device. However, no restrictions are put on how she coordinates
communication between the parties through the information processing device.

The central question is what conditions should we put on the sequences of direct
mechanism that reflect dynamically consistent redesign strategy. In the bilateral bargain-
ing example above, the conditions should embody the intuition that a feasible mechanism
is not renegotiated ex post, after the outcome has been revealed, to a new mechanism
that is itself not subject to renegotiation, and so forth. More generally, after each his-
tory, the designer must be able to commit to the mechanism that the strategy assigns
to her, given the counterfactual of not doing so.

The planner’s mechanism selection strategy must be specified for all histories, com-
pactly summarized by sequences of beliefs. Our solution concept guarantees that, after
each history, the chosen mechanism gives the agents the incentives to play truthfully
the information processing device and planner the incentives to obediently follow the
implementation device. The two conditions that are necessary and suffi cient for the
mechanism design strategy to meet these desiderata are optimality and consistency.
The former implies that, after all histories, the prescribed mechanism must maximize
the planner’s preferences among all the mechanisms that are feasible. We appeal to the
ε−optimality criterion that impose an ε−cost for deviations. Such costs can be inter-
preted as a consequence of redesign of the mechanism. The latter condition requires
that the mechanism prescribed by the strategy today must not be in conflict with the
mechanism prescribed to her in the future.

Our main result is that an ε−optimal and consistent mechanism design strategy
always exists. The proof, which relies on a fixed point argument, uses history depen-
dent mechanism design strategies. Indeed, there may be no history independent design
strategy that meets the two desiderata.

Our approach highlights the central aspect of the mechanism design problem when
the mechanism can be redesigned or renegotiated: it is not only the a priori incentives
to reveal information that matter for the design but also how information flows within
the mechanism are managed. Information that is revealed along the play may adversely
affect the incentives at later stages (in Freixas et al. 1985, this property is called the
"ratchet effect") which, given farsighted agents, affects the incentives already at the

2 Incrutability principle: any equilibrium of the mechanism selection can be represented as a direct
single stage mechanism that is truthfully played and obediently implemented.

3Assuming public signals restrics away private communication. This is a simplification. See Skreta
(2006, 2010) for analyses of mechanism design without commitment but with private communication.
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information revelation stage. How the information processing device should optimally be
designed is the central - but diffi cult - question. The information processing device must
be informative enough to allow implementing the desired outcome. But this still leaves
much freedom for the designer, and effective solutions often exists. We demonstrate the
power of designing information processing devices in the bilateral bargaining context.

Our second result studies mechanisms that can be implemented wihtout commitment
in the canonical bargaining set up of Myerson and Satterthwaite (1983). The central
question we ask whether the commitment inability rule out the possibility to implement
the second best mechanism (Pareto-optimal in the class of incentive compatible, indi-
vidually rational, and budget balanced mechanisms)? Our answer to this question is the
affi rmitive: there is a Bellman optimal and consistent mechanism design strategy that
implements the incentive effi cient bargaining mechanism even if the agents do not have
any external ways to commit to the ineffi cient no-trade outcomes. The driving force
behind this result is that, by managing what information is being revealed during the
bargaining process, the planner can induce a situation ex post where the buyer and the
seller can commit not to continue bargaining any further even if they know that mutually
beneficial transactions would still be possible. Interestingly, this calls for an information
structure that is not as coarse as possible nor as fine as possible, but rather something
in the middle. Specifically, the information structure that permits this the one in which
the agents conceive it possible that the agents’valuations are equally high, the agents
valuations are equally low, or the buyer has the high valuation and the seller the low
valuation. We demonstrate that, under such occurrences, the bargainers cannot reliably
execute trade as it would require no trade in both the cases where the valuations are
equal which cannot be committed to.

The novelty of our approach is that renegotiated mechanism is subjected to the same
criticism than the original mechanism but otherwise possible mechanism/communication
structures are not restricted. The key difference to Neeman and Pavlov (2012) and Forges
(2995) is that they only focus on one-step counterfactuals whereas we account for the
infinite hierarchy of counterfactuals. As a consequence, their solutions have more cutting
power but suffer from existence problems.

Bester and Strausz (2001) study the one-agent scenario where the principal cannot
commit to a certain action after the agent has communicated his type. Their main
achievement is in showing that implementable outcomes can still be characterized via a
version of the revelation principle. This result, however, heavily relies on the restricted
form of the commitment problem. The principal can commit not to employ another
mechanism once the agent has communicated his information. In particular, she can
commit not to add another layer of mechanism on top of the old one. In contrast, we
allow the planner to change the mechanism without restrictions.

Commitment is critical question in the context of bargaining. The famous Coase
Theorem asserts that, in the absence of commitment, the uniformed seller cannot commit
to selling the good above her own reservation valuation. A mechanism design version
of this theorem is provided by Ausubel and Deneckere (1989). McAfee and Vincent
(1997) focus on a related question of designing an auction in a multi-agent environment
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when the seller cannot commit to the reserve price. They obtain a version of the Coase
Theorem: when the opportunity cost of waiting vanishes, the seller is forced to sell
without a reserve price. Skreta (2006, 2011) studies more auction design when the seller
has more flexibility in changing the rules of the game. Allowing remarkably rich strategy
set for the seller, she is able to characterize the equilibrium mechanism. Her analysis
relies on the assumption that redesigning the game is costly for the seller. Vartiainen
(2011) approaches auction design without commitment from another angle. No waiting
or other redesign costs are assumed. Applying the same solution as this paper, the
key assumption in Vartiainen (2011) is that the information processing device prevents
private communication between the seller and any individual agents. It is shown that
the unique mechanism that is implementable by using a stationary mechanism design
strategy implements the English auction in all cases.

General analyses of mechanism design without commitment include Holmström and
Myerson (1983), Green and Laffont (1985), Baliga et al. (1997), and Lagunoff (1992).
None of these does, however, address the main question of this paper: how to design
mechanism when the planner can change the rules of the game as many times she wishes.
The focus of Holmstöm and Myerson (1983) is in the question of ex ante committing to
a particular rule. Their criterion "durability" excludes mechanisms that are not robust
against a subset of types revealing that they belong to this set by designing a new
mechanism for the types in this set. The posterior implementability concept of Green
and Laffont (1985) demands that the incentives of the agents must not be sensitive to
them understanding which outcome becomes implemented. As in this paper, Baliga
et al. (1997) study mechanism design when planner is also a player. However, their
focus is in Nash implementation which renders the informational processing property of
the mechanism quite different. Lagunoff (1992) studies repeated redesign of complete
information mechanism. He aim is to show that, under rather mild conditions, the any
outcome that can potentially become implemented is Pareto optimal.

This paper is organized as follows. Section 2 specifies the set up and introduces the
solution concept. Section 3 proves the existence of the solution. Section 4 applies the
solution to the bilateral bargaining set up, and Section 5 provides concluding discussion.

2 Set up

Preferences There is a set {1, ..., n} of agents, a planner, and a finite set of physical
outcomes X. Agent i’s privately known type θi is drawn from a finite set Θi. Write
Θ = ×i∈NΘi with a typical element θ = (θi)

n
i=1, and Θ−i = ×j 6=iΘi with a typical

element θ−i = (θj)j 6=i.4 Denote the set of probability distributions on a (countable )
set A by ∆A. Denote a typical element of ∆Θ by p and by pi(· : θi) the conditional
distribution over Θ−i given p and the agent i’s type θi. The support of the probability
distribution p is denoted by supp(p).5 Agent i’s vNM utility functions u is of form
ui : X ×Θi → R.

4That is, pi(θi) =
∑
θ−i

p(θi, θ−i).
5 supp(p) = {θ : p(θ) > 0}.
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The agents and the planner want to maximize their expected payoff. As the outcome
of the game may depend on the types of the agents’, expectations are defined with
respect to the outcome function f : Θ → ∆X that specifies a probability distribution
over outcomes for each type profile. Denote by

F = {f : Θ→ ∆X}

the set of all outcome functions. Endowed with the uniform metric, F is a compact
metric space.

Given a probability distribution over the agents’ types p ∈ ∆Θ and an outcome
function f : Θ→ ∆X, agent i’s expected payoff is∑

θ−i

∑
x

p (θ−i : θi)ui(x, θ)f (x : θ) .

Planner’s preferences are captured by a Bernoulli utility function v : X × Θ → R+

such that her expected payoff of f under p is given by∑
θ

∑
x

p (θ) v(x, θ)f (x : θ) .

Denote by v(f, p) the expected value of an outcome function f under p, and by v(x, p)
the expected value of the outcome x under p.

Mechanism To implement an outcome function f the planner must elicit infor-
mation from the agents by using a mechanism. A mechanism does two things: processes
information and implements an outcome.We separate these tasks. A mechanism is then
a composite function

g ◦ r : Θ→ ∆X,

consisting of an information processing device r and an implementation device g such
that

r : Θ→ ∆S and g : S → X,

where ∆S is the set of probability distributions over a set S which we assume to be
countably infinite.

A composite mechanism works as follows. After receiving the agents’messages θ̂ =
(θ̂1, ..., θ̂n), the information processing device r generates a (possibly random) public
signal s ∈ S such that r(s : θ̂) > 0. This signal is used by the outcome function g
to implement the outcome g(s) ∈ X. The signal s is the only information anyone -
including the planner - obtains from r.6

Because the set S is infinite it will be convenient - and without loss of generality -
to assume that g is given and has the property that

g−1(x) = {s ∈ S : g(s) = x}
6That the implementation device g is deterministic reflects the idea that the designer cannot make

partial commitment, e.g. in the probabilistic sense, concerning implementation before the outcome is
actually implemented. However, allowing random implementation device would not affect our results.
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contains infinitely many elements for all x ∈ X. Then also g(S) = X. Given this
specification of g, the mechanism selection problem of the planner reduces to one of
choosing r.

Denote in particular by 1s a constant information processing device that generates
signal s ∈ S with probability one under all type profiles. That is,

1s = r such that r(s : θ) = 1, for all θ ∈ Θ.

Assuming that the agents report their types truthfully, the signal s generated by
a mechanism r induces a posterior distribution p(r, s) ∈ ∆Θ such that, whenever s ∈
r(supp(p)),

p (θ) (r, s) =
p(θ)r (s : θ)∑

θ′∈Θ p(θ
′)r
(
s : θ′

) , for all θ ∈ Θ.

When s 6∈ r(supp(p)), no restrictions are put on the posterior belief p (·).
Many composite mechanisms induce the same outcome function. A particular exam-

ple of a composite mechanims is the direct mechanism where g is a one-to-one function.
This mechanism reveals the least amount of information necessary to implement the
outcome specified by the outcome function f. In the other extreme there is the fully
revealing mechanism that has the property that r is one-to-one. Under such mechanism,
the agents fully reveal their types to the designer who then takes an action. It is clear
that a fully revealing mechanism is likely to suffer from the planner’s commitment prob-
lems.. Once the planner becomes informed of all the relevant information, she often is
no longer interested in implementing the planned outcome. However, as we demonstrate
in Section 5, committing to a mechanism may mean that some information should be
induced —the direct mechanism is, in general, not the right mechanism either.

3 The Solution

The planner’s problem is that she cannot commit to the implementation device g at
the ex post stage of the mechanism. Rather, once the signal s has been produced by
the information processing device r she may be tempted to design a new mechanism
under her post-signal belief. In this section, we develop a solution that identifies, under
each history, planner’s optimal equilibrium in the mechanism design game subject to the
constraint that she will not change the equilibrium in the future, i.e. optimal mechanisms
that the planner can commit to. Such a mechanism selection strategy is solved in two
nested parts. First we specify mechanisms that the agents can commit to under the
hypothesis that the planner can. Then we identify conditions under which the planner
indeed can commit to the mechanism given that the agents play truthfully. This requires
defining which mechanism the planner would implement under possible ex post beliefs.

Agents’ incentives In order to study mechanisms that are consistent with the
agents’incentives, let us assume that, at any given stage of the game, the planner can
commit to implement the current mechanism as planned. What matters to the agents
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incentives is the outcome function associated to the mechanisms. Given p, mechanism
g ◦ r induces an outcome function f if f = g ◦ r : Θ→ ∆X. That is, for any x ∈ X,

f (x : θ) =
∑

s∈g−1(x)

r (s : θ) , for all θ ∈ Θ.

Type θi’s interim payoff from a mechanism g ◦ r under prior beliefs p when he reports
θ̂i to the mechanism is∑

θ−i

∑
x

p (θ−i : θi)ui(g(s), θ)r
(
s : θ−i, θ̂i

)
.

By the revelation principle (Myerson, 1979), an implementable mechanism g ◦ r must be
incentive compatible (IC):∑
θ−i

∑
s

p (θ)ui (g(s), θ)
[
r (s : θ)− r

(
s : θ−i, θ

′
i

)]
≥ 0, for all θi, θ′i ∈ Θi, for all i = 1, ..., n.

(1)
Conversely, if a mechanism at stage t is incentive compatible, and the planner can
commit to implement any of its receommendations, then the agents are willing to play
it truthfully. Denote by

IC(p) = {r ∈ Φ : g ◦ r is incentive compatible under p}

Truthful announcements form a Bayes-Nash equilibrium in an incentive compatible
mechanism r if the planner can commit to follow g after r has produced a signal s. Thus
a mechanism maximizing the planner’s payoff in IC(p) can be interpreted as the her full
commitment benchmark. However, the many composite mechanisms that generate the
same outcome function all not equivalent in terms of the planner’s incentives. Different
mechansims reveal different amount of information to the planner and hence may affect
her strategic possibilties ex post.

Planner’s incentives The planner can condition her design strategy on the past
design history. The stage t public history is summarized by a sequence

h = ((r0, s0), (r1, s1), ..., (rt, st)),

where g ◦ rk is the mechanism selected by the planner at stage k, and sk is the output
generated by the mechanism given the actions of the agents. Denote by H the set of all
finite public histories and by ∅ the initial history. Denote by h a typical element of H
and by (h, (r, s)) the concatenation of h and the public outcome (r, s) at the next stage.
Then also (h, (r, s)) is a public history.

Denote by p|h planner’s belief at history h (and hence by p|∅ the initial belief).
Assuming that the agents report their types truthfully, the signal s generated by a
mechanism r induces a posterior distribution p|h,(r,s) ∈ ∆Θ such that

p|h,(r,s) (θ) =
p|h(θ)r (s : θ)∑

θ′∈Θ p|h(θ′)r
(
s : θ′

) , whenever s ∈ r(supp(p|h)).
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When s 6∈ r(supp(p|h)), no restrictions are put on the posterior belief p|h,(r,s) (·).
Any implementable mechanism g◦r must be robust against the planner’s temptation

to redesign it ex post. That is, of replacing the outcome g(s) with another mechanism
in Φ that is preferred to the outcome g(s) under the posterior belief generated by the
signal s the information processing device r. Our task is to identify conditions under
which she will not do that.

Let the designer’s mechanism design strategy be captured by a choice rule σ that
specifies her mechanism choice for each history h ∈ H. Since the planner can only utilize
mechanisms that she can commit to, the choice rule σ is defined ion H and has to satisfy

σ(h) ∈ IC(p|h), for all h ∈ H. (2)

One the one hand, σ(h) ∈ IC(p|h) means that the planner continues the game by
designing a new mechanism given the belief p and history h. One the other hand,
σ(h, (r, s)) = 1g(s) means that the planner does not change the suggested outcome; she
chooses the constant mechanism that implements g(s). The function σ(·) represents the
dynamic mechanism selection strategy of the seller, conditioned on histories. Note that
the strategy is defined for all histories, including the off-equilibrium ones.

We now identify properties that the strategy σ should satisfy. We argue that the
sequential rationality of the planner, and the players’knowledge of this, requires that σ
reflect internal consistency and optimization. First we describe the set of mechanisms
that the planner can commit to today given that σ is followed in the future. Denote by
Cσ(h) planner’s maximal choice set at history h, given σ. That is, the set of incentive
compatible mechanisms that are not subject to redesign under the hypothesis that σ
would be followed ex post:

Cσ(h) =
{
r ∈ IC(p|h) : σ(h, (r, s)) = 1s, for all s ∈ r(Θ)

}
.

Choice set Cσ(h) is defined with respect to the assumed σ. We now formally specify
conditions that sequential rationality imposes on the choice rule σ itself. The first con-
dition requires consistency in the sense that employing σ ex ante should not contradict
σ being employed ex post.

Definition 1 (Strategic Consistency) Choice rule σ is stregically consistent if σ(h) ∈
Cσ(h), for all h ∈ H.

Given a mechanism r and a choice rule σ, denote by r ◦σ the mechanism that results
from first truthfully playing r and then following σ. That is

(r ◦ σ)(s : θ) =
∑
s′∈S

r(s′ : θ)σ(h, (r, s′))(s : θ), for all s ∈ S, for all θ ∈ Θ.

This compound mechanism need not be incentive compatible. However, if it is, then the
planner could first use r and then follow σ in order to implement r ◦ σ. Since it should
matter whether she implemens r ◦ σ directly or via first employing r and then following
σ, the mechanism r ◦ σ should belong to the choice set of the planner at h.
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Definition 2 (Structural Consistency) Choice rule σ is structurally consistent if
r ◦ σ ∈ IC(p|h) implies r ◦ σ ∈ Cσ(h), for all r ∈ IC(p|h), for all h ∈ H.

Our final condition reflects local optimality.

Definition 3 (ε−Optimality) For ε > 0, the choice rule σ is ε−optimal if v(σ(h), p|h) ≥
v(r, p|h)− ε, for all r ∈ Cσ(h), for all h ∈ H.

In words, for any chosen mechanism of the planner there should be no other mecha-
nism that is more profitable for her than what she can commit to, given the ε−cost of
changing the strategy. ε−optimality can be viewed as a one-time deviation restriction to
the planner’s design strategy: after any history h, she will not profit from a one-shot de-
viation to σ given that she will later follow σ.Conversely, without ε−optimality, σ could
not be convinsingly committed to since the planner is able to make a reliable one-time
deviation at some history.

The ε−cost has natural interpretation in the cost of changing the planned mechanism.
Imagine that planner declares which mechanism she implements after all contingencies.
If there is an ε−cost of reneging from this agreement, the mechanism that she can reliably
commit to are characterized by the ε−optimality condition.

The notion of -equilibria is important in the general theory of stochastic games. For
example, there are simple examples of stochastic games that do not Nash nor subgame
perfect Nash equilibrium equilibrium but do possess an -equilibrium for any strictly
bigger than 0. Consequently, existence results in many natural classes of stochastic
games require ε−threshold for deviations (see e.g. Flesch et al 2010).

Interpretation: A redesing game We now extend the single stage mechanism
selection game by allowing the planner to redesign the mechanism repeteadly, once an
outcome has been realized. We argue that a Bellman optimal and consistent mechanism
selection strategy σ can be interpreted as reduced form expression of a weak Perfect
Bayesian Equilibrium (PBE) of a natural mechanism design game, that reflects the
planner’s inability to commit to the rules.

Consider the following multistage game:
At each stage t = 0, 1, 2, ..., the planner announces a mechanism rt, where rt : Θ →

∆S.7 Given rt, the agents choose a message profile m ∈ Θ which produces a lottery
over messages rt(· : m) ∈ ∆S. The agents and the planner update their beliefs based on
the observed signal s. Under the derived belief, the planner either implements g(s) or
moves the play to period t+ 1, in which case the game repeats itself.8

This is a proper extensive form game with incomplete information and imperfect
monitoring. The game has many (weak) PBEa, where (i) the players update their
beliefs using the Bayes’rule when possible, (ii) maximize their expected payoffs given
the strategies of the other players and their beliefs. In particular, the planner updates her

7Allowing messages spaces larger than ×iΘi would not affect the results.
8Nothing would change if we allow the planner to discount her payoff by factor δ ∈ (0, 1]. If δ = 1,

then the payoff of all parties from infinitely long delay in implementing an outcome is 0.
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beliefs in each period after observing the signal that this period’s information processing
device generates. Off-equilibrium beliefs are chosen to justify the optimization behavior
in (ii).

In particular there is always the babbling equilibrium where messages have no mean-
ing, information does not accumulate, and the planner’s decisions are made under the
initial belief. However, such an equilibrium fails to be responsive to the planner’s ability
induce truthtelling behavior, whenever such behavior is consistent with incetnives - the
basic doctrine in the Myersonian mechanism design literature. The aim of the current
model to capture the consistency conditions that specifiy when can a mechanism deom-
mitted to, even when the agents are responsive to the echanism and the planner cannot
commit not to exploit theirninforation.

Note that the assumption of consistency is consistent with incentive compatibility.
Under the hypothesis that the designer follows the choice rule σ :

• if r ∈ Cσ(h), then, since the mechanism r will not be redesigned ex post and r is
incentive compatible, truthful reporting in r can be sustained in equilibrium.

• if r 6∈ Cσ(h), then, since the mechanism r will be redesigned ex post and the
choice rule is structurally consistent, truthful reporting in r cannot be sustained
in equilibrium.

Note that restricting attention to mechanism design stratgy σ that, at each stage,
implements a mechanism truthfully (or implements obediently the recommendation of
the last stage mechanism) is without loss of generality. If, at history h, a public perfect
equilibrium that eventually induces a type θ conditioned lottery over final outcomes and
posterior beliefs, then there is an incentive compatible one-stage mechanism that induces
the same type dependent lotteries over outcomes and posterior beliefs that generates at
least as high payoff to the planner. This follows by the revelation principle and the fact
that the set S of signals is infinite: finitely many consecutive mechanism have the physical
ability to ganerate exactly the same posterior beliefs as a single stage mechanism. Hence
a scheme that specifies the planner’s choice of the continuation equilibrium in class of
equilibria that she can commit to can be simulated by a choice rule σ that assumes that
each continuation equilibrium is of length 1.

4 Existence

We now state the main result of the paper.

Theorem 1 For any ε > 0, there is a strategically consistent, structurally consistent,
and ε−optimal mechanism design strategy σ.

The remainder of this section is devoted to proving the result. First, let

x(p) ∈ arg max
x∈X

v(x, p),
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and denote
v̄(p) = v(x(p), p)

Use the notation P (r, p) the set of posterior beliefs, generated with positive probability
by the mechanism r from the initial beliefs p :

P (r, p) = ∪s∈r(supp(p)){p|(r,s)}.

We will prove the existence via a series of subresults. The proof will rely on a fixed point
argument. Wirst we develop an iterative procedure that rules out beliefs under which
we can be sure that the planner cannot implement a constant mechanism.

Denote by ρ a response plan ρ : S → R such thatρ(s) ∈ IC(p|(r,s)) for all s ∈ r(Θ).
Then denote by r ◦ ρ the compound mechanism such that

(r ◦ ρ)((s, s′) : θ) = r(s : θ)ρ(s)(s′ : θ), for all (s, s′) ∈ S2, for all θ ∈ Θ.

In particular, for any s ∈ S, denote by ρs the simple response plan with a property that
ρs(s

′) = 1s′ if s′ 6= s.
Let B be a subset of beliefs, i.e. B ⊆ ∆. Given belief p, we say that a response plan

ρ B−blocks mechanism r ∈ IC(p) if

• v(ρ(s), p|(r,s))− ε ≥ v̄(p|(r,s)), for all s

• P ((r ◦ ρ), p) ⊆ B,

• (r ◦ ρ) 6∈ IC(p) or v((r ◦ ρ), p)− ε < v̄(p).

Further, we say that a mechanism r B−covers belief p if

• if v(r, p)− ε ≥ v̄(p) and r ∈ IC(p),

• P (r, p) ⊆ B,

• there is no simple response plan ρs that B−blocks r, given p.

That is, when a mechanism r is blocked by a response plan ρs, choosing first r and
then continuing with ρs is incentive compatible only if the eventual expected payoff
for the planner is less profitable than implemetning a constant mechanism under p.
Thus choosing r cannot be justified under the hopothesis that ρs is employed ex post.
Conversely, when a mechanism r covers belief p, there is no such way to punish the
planner. Thus the planner cannot commit to implemetning a constant mechanism in the
beginning.

Denote by UC(B) the uncovered beliefs under B, i.e. ones that are not covered under
B by any r. Let UC(∆) = UC0 and UCt+1 = UC(UCt) for all t.

By construction UCt ⊆ UCt+1 for all t. Denote

UC∗ = ∩tUCt.

Then UC∗, the ultimate uncovered set, has the property that no belief in p is UC∗−covered
by any mechanism r ∈ IC(p).
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Lemma 1 The set UC∗ is nonempty.

Proof. It suffi ces to show that there is p that is not covered in any iteration of UCt.
Take a degenerate distribution pθ such that pθ(θ) = 1 and pθ(θ′) = 1 for all θ′ 6= θ. We
show that pθ is not covered in any iteration. To this end, for any r,

v(r, pθ) = v(r, θ) =
∑
s

r(s : θ)v(g(s), θ) ≤ v(x(pθ), θ) = v̄(pθ).

Thus the items in definition covering cannot be met by any r.

We first state that the covering operation iterates.

Lemma 2 Let r B−cover p and let ρs(s) B−cover p|(r,s). Then (r ◦ ρs) B−covers p.

Proof. Since r B−covers belief p, any response plan ρs such that v(ρs(s), p|(r,s))−ε ≥
v̄(p|(r,s)) and P ((r ◦ ρ), p) ⊆ B also satisfies (r ◦ ρs) ∈ IC(p) and v((r ◦ ρ), p)− ε ≥ v̄(p).

We now argue that any p not in UC∗ is not only UCt−covered by some rt for all t
but also UC∗−covered by some r. This property guarantees that once a belief outside
UC∗ is reached, there a reliable way to invoke a mechanism that induces beliefs back in
UC∗.

Lemma 3 If p 6∈ UC∗, then there is r that UC∗−covers p.

Proof. Let p be UCt−covered, i.e. p 6∈ UCt+1. Assume that there is no r that
UCt−covers p, for some t. We prove a contradiction. By repeately applying Lemma 2,
we can construct a sequence {ρk

sk
} of response plans such that (r◦ρ0

s0◦...ρ
k
sk

) UCt−covers
p, for all k = 0, 1, ... .

Denote (r ◦ρ0
s0 ◦ ...ρ

k
sk

) = ρ̄k.We now claim that there is a mechanism ρ̄(p) such that
ρ̄k(p) → ρ̄(p). Then also ρ̄(p) UCt−covers p. To this end, denote by S̄k ⊆ S the set of
absorbing signals under ρ̄k(p), i.e.

S̄k = {s : p|(ρ̄k,s) 6∈ UCt+1}.

Let the probability βk be defined by

βk =
∑
θ

∑
s∈S̄k

p (θ) ρ̄k(p) (s : θ) .

Since, by the construction of ρ̄k(p),

P (ρ̄k(p), p) ∩ UCt+1 ⊆ P (ρ̄k+1(p), p) ∩ UCt+1, for all k = 0, 1, ... , (3)

also
βk ≥ βk+1, for all k = 0, 1, ... . (4)

13



It now suffi ces that βk →k 0.
The payoff generated by ρkt (p) satisfies

v(ρkt (p), p) =
∑
θ

∑
s

p (θ) v(g(s), θ)ρkt (s : θ)

=
∑
θ

∑
s

p (θ) v(g(s), θ)ρk−1
t (s : θ) +

∑
θ

∑
s

p (θ) ρk−1(p)(s : θ)
[
v(ρ(p)(p|(r◦ρk−1,s)), p|(r◦ρk−1,s))− v̄(p|(r◦ρk−1,s))

]
≥

∑
θ

∑
s

p (θ) v(g(s), θ)ρk−1
t (s : θ) +

∑
θ

∑
s∈S̄k

p (θ) ρk−1(p)(s : θ)ε

=
∑
θ

∑
s

p (θ) v(g(s), θ)ρk−1
t (p) (s : θ) + βkε,

where the inequality follows from the defition of covering. Hence, by induction on k,

v(ρkt (p), p) ≥
∑
θ

∑
s∈S∗

p (θ) v(g(s), θ)ρ(p) (s : θ) +

(
k −

k∑
`=0

β`

)
ε

≥ v(ρ(p), p) + kβkε,

where the second inequality follows from (4). Since v(ρkt (p), p) and v(ρ(p), p) lie in a
bounded space, and since ε > 0, the second term of the final expression must converge
to a finite limit as k tends to infinity. Hence βk → 0, as desired.

Since (??) holds, the mechasnism ρ∞t (p) is well defined, UCt−covers p, and has the
property

P (ρ∞t , p) ⊆ UCt+1.

By induction on t,
ρ∞t ◦ ... ◦ ρ∞∞

UC∗−covers any p 6∈ UC∗.

We now construct a mechanism design strategy that meets the two desiderata by
using the notions of UC∗ and UD(UC∗). We first identify a way to punish the planner
when the beliefs are in the set UC∗.

Lemma 4 Let p ∈ UC∗ and r ∈ IC(p). Then there is ρs that UC
∗−blocks r.

Proof. By the construction of UC∗, there is no r that UC∗−covers p. Thus r is
blocked by a response plan.

We now partition the set H of histories into distinct "phases" Hp,r. To this end, we
first define two operators. For any pair (p, r) such that p ∈ UC∗, v(r, p) − ε ≥ v̄(p),
r ∈ IC(p), and P (r, p) ⊆ UC∗, identify a simple response plan ρp,rs that UC∗−blocks r
given p, such that there is no other simple response plan ρs that UC

∗−blocks r with the
property that

v(ρs, p)− ε ≥ v(ρp,rs , p).

14



By Lemma 4, and since the planner’s payoffs are bounded, such a ρp,rs exists.
Similarly, for each p 6∈ UC∗, identify a mechanism rp that UC∗−covers p, such that

there is no other mechanism r that UC∗−covers p with the property that

v(r, p)− ε ≥ v(rp, p).

By Lemma 3, and since the planner’s payoffs are bounded, such a rp exists.
Finally, for any pair (p, r) such that p ∈ UC∗, construct a response plan ρp,r that

UC∗−blocks r given p such that there is no other response plan ρ that UC∗−blocks r
with the property that

v(ρ(s), p|(r,s))− ε ≥ v(ρp,r(s), p|(r,s)).

To see why such a response plan exists, note that at each p|(r,s) 6∈ UC∗ there is rp|(r,s)
that UC∗−covers p|(r,s).

Let ∅ ∈ Hp0,1s0
for some s0 and, for any h ∈ Hp,r, let

(h, (r′, s)) ∈
{
Hp|h,(r′,s),1s , if P (r′, p|h) ⊆ UC∗ and (r ◦ r′) 6∈ IC(p) or v(r ◦ r′, p)− ε ≤ v̄(p),

Hp,r◦r′ , otherwise.
(5)

Recursively,
h ∈ Hp,r implies that there is s such that p|(r,s) = p|h

Construct a mechanism design strategy σ that is measurable with respect to the partition
{Hp,r}p,r such that, for any h ∈ Hp,r,

σ(h, (r′, s′)) =


1s, if P (r′, p|h) ⊆ UC∗ and (r ◦ r′) 6∈ IC(p) or v(r ◦ r′, p)− ε ≤ v̄(p),

ρp,rs (s), otherwise.
rp|h,(r′,s′) , if p|h,(r′,s′) 6∈ UC∗

(6)
That is, the mechanism design strategy depends on the phase, the current belief of the
planner, and the status quo outcome. By Lemma ??, G∗ and B∗ are disjoint and σ is
well defined. We shall now show that the constructed strategy meets the two desiderata.

Proposition 1 The mechanism design strategy σ constructed in (5) and (6) is struc-
turally consistent, strategically consistent, and ε−optimal.

Proof. First we describe the relevant choice sets for each history history h′ =
(h, (r′, s)). Let h ∈ Hp,r.

1. If P (r′, p|h) ⊆ UC∗ and (r ◦ r′) 6∈ IC(p) or v(r′, p)− ε ≤ v̄(p), then

Cσ(h′) =
{
r′′ ∈ IC(p|h′) : P (r′′, p|h′) ⊆ UC∗ and v(1s ◦ r′′, p|h′)− ε ≤ v̄(p|h′)

}
.

2. Otherwise,

Cσ(h′) =

{
r′′ ∈ IC(p|h′) :

P (r′′, p|h′) ⊆ UC∗, and
(r ◦ r′ ◦ r′′) 6∈ IC(p) or v(r ◦ r′ ◦ r′′, p)− ε ≤ v̄(p)

}
.
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We then check that σ is strategically consistent:

1. If P (r′, p|h) ⊆ UC∗ and v(r′, p)−ε ≤ v̄(p), then, since p|h′ ∈ P (r′, p|h), P (1s, p|h′) =
{p|h′} ⊆ UC∗ and v(1s ◦ 1s, p|h′)− ε ≤ v̄(p|h′). Hence 1s ∈ Cσ(h′).

2. If not P (r′, p|h) ⊆ UC∗ and v(r′, p) − ε ≤ v̄(p), then, since ρp,r◦r′ UC
∗−blocks

r given p, P (ρp,r◦r′(s), p) ⊆ UC∗ and (r ◦ r′ ◦ ρp,r◦r′(s)) 6∈ IC(p) or v(r ◦ r′ ◦
ρp,r◦r′(s), p)− ε ≤ v̄(p). Hence ρp,r◦r′(s) ∈ Cσ(h′).

To prove that σ is ε−optimal, we proceed case by case.

1. If P (r′, p|h) ⊆ UC∗ and v(r′, p) − ε ≤ v̄(p), then v(r′′, p|h′) − ε ≤ v̄(p|h′) for all
r′′ ∈ Cσ(h′). Thus 1s ∈ arg maxs′ v(1s′ , p|h′) = v̄(p|h′).

2. If not P (r′, p|h) ⊆ UC∗ and v(r′, p) − ε ≤ v̄(p), then, by the construction of
ρp,r◦r′(s), there is no ρ

′ that UC∗−blocks r such that

ρ′ =

{
r′ s.t. v(r′, p|h,(r◦r′,s′))− ε > v(ρp,r◦r′(s

′), p|h,(r◦r′,s′)), if s′ = s,

ρp,r(s
′), if s′ 6= s.

Thus there is no r′ ∈ Cσ(h′) such that v(r′, p|h,(r◦r′,s))−ε > v(ρp,r◦r′(s), p|h,(r◦r′,s)).

Finally, we conclude that σ is structurally consistent. Consider r′′ 6∈ Cσ(h′). Then

Cσ(h′, (r′′, s′)) =

{
r′′′ ∈ IC(p|h′,(r′′,s′)) :

P (r′′′, p|h′,(r′′,s′)) ⊆ UC∗, and
(r′′ ◦ r′′′) 6∈ IC(p|h′) or v(r′′ ◦ r′′′, p|h′)− ε ≤ v̄(p|h′)

}
.

Thus {
(r′′ ◦ r′′′) ∈ IC(p|h′) : r′′′ ∈ Cσ(h′, (r′′, s′))

}
⊆

{
(r′′ ◦ r′′′) ∈ IC(p|h′) : P ((r′′ ◦ r′′′), p|h′) ⊆ UC∗ and v(r′′ ◦ r′′, p|h′)− ε ≤ v̄(p|h′)

}
⊆ Cσ(h′),

implying structural consistency.

4.1 Participation constraints

In games of incomplete commitment, it is natural to permit agents to exit the game.
However, modeling choices need to be made as regards to when this will be possible.
There are two primary possibilities: (i) Once the agents enter a mechanism, they commit
to it until the planner changes its rules. At this point, they choose whether or not enter
the new mechanism. (ii) Agents can exit the mechanism at any time.

As is clear from the analysis above, what is suffi cient for the existence is the conti-
nuity of the relevant set of mechanisms. Previously, this was guaranteed by the value
distinction assumption. With participation constraints, this condition to be strenght-
ened.
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Interim individual rationality The first alternative leads to the standard interim
participation constraint. Normalizing the value of the outside option of a player to zero,
a mechanism r is (interim) individually rational if∑

θ−i

∑
s

p (θ)ui(g(s), θ)r (s : θ) ≥ 0, for all θi ∈ Θi, for all i = 1, ..., n.

We say that r is robustly interim incentive compatible if, for any i and for any θi ∈supp(pi),
r(· : θ−i, θi) 6= r(· : θ−i, θ̂i) for some θ−i implies∑

θ−i

∑
s

p (θ)ui(g(s), θi)r (s : θ) > 0.

To recover the existence of the previous section we only need to replace the IC and ÎC
correspondences with the correspondence of incentive compatible, individually rational
information processing devices and that of robustly incentive compatible, robustly indi-
vidually rational information processing devices, respectively. Replicating the steps in
the existence proof with these correspondences is routine.

Other notions of participation That is, whenever the functioning of r relies on
θi revealing his type, θi should have strict incentive to participate. and it is ex post
individually rational if9

ui(g(s), θi) ≥ 0, for all s ∈ r(θ), for all θ ∈ Θ, for all i = 1, ..., n.

Assume that the set of feasible outcomes

XIR = {x : ui(x, θi) ≥ 0, for all , for all θ ∈ Θ, for all i = 1, ..., n}

Hence, XIR comprises all outcomes that can be implemented without violating the
participation constraints.

The problem is that incentive compatibility and ex post individual rationality are not
independent: an agent might exercise the veto right after off-equilibrium histories. The
following simple extension to incentive compatibility resolves the problem by allowing i
to veto the outcome even after his untruthful announcements.10 Denote by

ũi(x, θi) := max{ui(x, θi), 0}

Given p, a mechanism r is veto-incentive compatible if∑
θ−i

p (θ)

[∑
s

ũi(g(s), θi)r (s : θ)−
∑
s

ũi(g(s), θi)r
(
s : θ−i, θ

′
i

)]
≥ 0, (7)

for all θi, θ′i ∈ Θi, for all i ∈ N.
9 Interim individual rationality requires that participation be weakly profitable before the output has

been realized. Ex post constraint has been analysed e.g. by Forges (1993, 1998) and Gresik (1991, 1996).
10Veto-incentive compatibility is due to Forges (1998), and is closely related to IC* of Matthews and

Postlewaite (1989).
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Veto-incentive compatibility requires that truthful reporting forms a Bayes-Nash equilib-
rium even if vetoing is possible after an untruthful announcement. Any implementable
mechanism must thus be veto-incentive compatible. For any p, denote the set of veto-
incentive compatible mechanisms by V IC(p). It is easy to see that any veto-incentive
compatible mechanism is incentive compatible and ex post individually rational (but not
vice versa).11

5 Application: Bilateral Bargaining

Since Myerson and Satterthewaite (1983), it has been well known that committing to
bilateral bargaining mechanisms is diffi cult. Consider a situation where two agents, a
buyer (agent 1) and a seller (agent 2), are about to trade a good. Agents’valuations θ1

and θ2 are drawn from the finite set Θ1 = Θ2 =
{

0, 1
K , ...,

K−1
K , 1

}
, for some K ∈ N.

Our focus is on budget balanced mechanisms. The set of possible outcomes is X =
{0, 1} ×R with a typical element (a,m) where a = 1 if the good is transferred from the
seller to the buyer and a = 0 if not, and m is a monetary transfer from the buyer to the
seller. Given valuations θ1, θ2, the payoffs of the agents from the outcome (a,m) are

u1(a,m, θ1) = aθ1 −m,
u2(a,m, θ2) = m− aθ2.

Let the agents’types be independently distributed according to p1 ∈ ∆Θ1 and p2 ∈ ∆Θ2.
Assume that p1 and p2 have a full support.

An outcome function associated to the problem is a mapping (a,m) : Θ→ {0, 1}×R.
A mechanism is ex post effi cient if a(θ1, θ2) = 1 whenever θ1 ≥ θ2 and a = 0 otherwise.
A mechanism is ineffi cient if it is not ex post effi cient.

Under prior distrbution p, denote the expected payoffs of the agents 1 and 2 when
they have valuations θ1 and θ2 and report θ′1 and θ

′
2, respectively, by∑

θ2

p (θ2 : θ1) [a(θ′1, θ2)θ1 −m(θ′1, θ2)],

∑
θ1

p (θ1 : θ2) [m(θ1, θ
′
2)− a(θ1, θ

′
2)θ2].

A direct mechanism is incentive compatible if∑
θ2

p (θ2 : θ1) [a(θ)θ1 −m(θ)] ≥
∑
θ2

p(θ2 : θ1)[a(θ′1, θ2)θ1 −m(θ′1, θ2)], for all θ1, θ
′
1 ∈ Θ1,∑

θ1

p (θ1 : θ))[m(θ)− a(θ)θ2] ≥
∑
θ1

p(θ1 : θ2)[m(θ1, θ
′
2)− a(θ1, θ

′
2)θ2], for all θ2, θ

′
2 ∈ Θ2,

11Choose θi = θ′i in (7). We only need EXP-IR and IC in the remainder of the paper.
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and it is (interim) individually rational if∑
θ2

p (θ2 : θ1) [a(θ)θ1 −m(θ)] ≥ 0, for all θ2 ∈ Θ2,∑
θ1

p (θ1 : θ2) [m(θ)− a(θ)θ2] ≥ 0, for all θ1 ∈ Θ1

A mechanism (a,m) is incentive effi cient if there is no other incentive compatible, indi-
vidually rational, and budget balanced mechanism

that generates higher expected payoffs to both the agents.
Let us interpret the planner as an impartial mediator who maximizes the joint surplus

of the agents: for all p ∈ ∆(Θ1 ×Θ2),

v((a,m), p) =
∑

(θ1,θ2)

p(θ1, θ2)a(θ1, θ2)(θ1 − θ2)

Given this objective function, the planner has always an incentive not to stop with
no-trade if there is still scope for further mutually beneficial trade.

The classic result due to Myerson and Satterthwaite (1983) says that when θ1 and θ2

are independently distributed on an interval and their absolutly continuous distributions
overlap, then the incentive and participation constraints prevent full effi ciency: any in-
centive compatible, individually rational, and budget balanced mechanism implements
an ineffi cient outcome with strictly positive probability. In particular, any incentive ef-
ficient mechanism is ineffi cient. This ineffi ciency raises the question of renegotiation.
Would the parties stop bargaining once they know that all mutually beneficial transac-
tions are not exhausted?

The aim of this section is to show that the agents’inability to commit to the mech-
anism does not prevent them implementing an incentive effi cient contract, i.e. there is a
consistent and Bellman optimal mechanism design rule that allows committing even to
the ineffi cient outcome. Towards this end, we need to construct an information process-
ing device under which consistent renegotiation is not feasible.

Before constructing the mechanism selection starategy that meets our desiderata, we
need to extend the classic characterization results of Myerson and Satterthwaite (1983)
to our discerete set up, as in the original context the set of valuations is a continuum (an
interval). This is not a completely innocent modification of the model since the original
Myerson-Satterthwaite (1993) result relies on an envelope argument, and hence requires
the set of types to be connected.

Let θ1 and θ2 be indepedently distributed with distribution functions p1 and p2.
Given pi, denote the cumulative distribution by

Pi(θi) =
∑
t≤θi

pi(t), for i = 1, 2,

19



and, for any γ ∈ [0, 1],

c1(θ1, γ) = θ1 − γ
1− P1(θ1)

p1(θ1)
, for all θ1 ∈ T,

c2(θ2, γ) = θ2 + γ
P2(θ2)

p2(θ2)
, for all θ2 ∈ T.

We say that the two distribution functions p1 and p2 are regular if c1(·, 1) and c2(·, 1)
are increasing.

We now establish a finite version of the classic result of Myerson and Satterthwaite
(1983). The proof of the proposition is relegated to the appendix.

Proposition 2 Let θ1 and θ2 be independently distrbuted with regular distribution func-
tions p1 and p2, respectively. Then there is an incentive effi cient direct mechanism
(aγ ,mγ) such that, for some γ ∈ (0, 1],

if c1(θ1, γ)− c2(θ2, γ) ≥ 0, then aγ(θ1, θ2) = 1 (8)

if c1(θ1, γ)− c2(θ2, γ) < 0, then aγ(θ1, θ2) = 0. (9)

From this result it is clear that, with suffi ciently fine grid in Θ1 = Θ2, the incentive
effi cient direct mechanism (aγ ,mγ) will be ineffi cient: an ineffi cient no-trade outcome
will materialize whenever

γ
1− P1(θ1)

p1(θ1)
+ γ

P2(θ2)

p2(θ2)
> θ1 − θ2 > 0.

We make two observations on the incentive effi cient mechanism. These properties
will be used to construct a mechanism on which the planner can commit to.

Remark 1 Let θ1 and θ2 be independently distributed with regular distribution functions
p1 and p2, respectively. Let (aγ ,mγ) be an incentive effi cient direct mechanism as defined
in (8)-(9). Then, for any (θ1, θ2) ∈ Θ1 ×Θ2,

aγ(θ1, θ2) = 0 implies
{
aγ(θ′1, θ2) = 0, for all θ′1 ≤ θ1,

aγ(θ1, θ
′
2) = 0, for all θ′2 ≥ θ2.

In particular, θ1 > θ2 and a(θ1, θ2) = 0 imply a(θ1, θ1) = a(θ2, θ2) = 0.

Our aim is to construct a mechanism that allows the parties to commit not to continue
negotiation even when trade does not take place. To this end, the information processing
device of the mechanism must be designed in such a way that the prescribed outcome
can be committed to under the posterior information. Since the information structure
with respect to the outcome function (a,m) is measurable is at most as coarse than that
of r, we need to verify that that the outcome of the optimal mechanism does itself reveal
unintended information. For our purposes, it suffi ces that there is an effi cient mechanism
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that prescribes zero monetary transfer when trade does not take place. The no-trade
outcome then only reveals that the types of the agents (θ1, θ2) satisfy (9).

This guarantees that, when trade does not take place, only this information is re-
vealed. Gresik (1991) establishes the existence of such transfers in the continuous type
sets case. For completeness, we construct such schemes in the current case when the
types sets are finite. The proof of the following lemma appears in the appendix.

Lemma 5 Let θ1 and θ2 be independently distrbuted with regular distribution functions
p1 and p2, respectively. Then there is an incentive effi cient direct mechanism (aγ ,mγ)
as defined in (8)-(9) such that the transfer rule mγ prescribes zero monetary transfer
when trade does not take place, i.e.

aγ(θ1, θ2) = 0 implies mγ(θ1, θ2) = 0.

Our question is whether there is a Bellman optimal and consistent mechanism choice
rule that permits implementation of a compound mechanism that is outcome equivalent
with the incentive effi cient mechanism (aγ ,mγ). We shall show that this is the case.

We are now ready to state the desired result: the agents can commit to implement-
ing the Myerson-Satterthwaite incentive effi cient mechanism in the bilateral bargaining
context even in the absence of external commitment devices. This entails that the agents
design an information processing device through which their communication takes place
in a way that they cannot commit not to continue bargaining after it becomes clear that
the ineffi cient no-trade outcome will become implemented.

Theorem 2 Let θ1 and θ2 be independently distributed with regular distribution func-
tions p1 and p2, respectively. Then there is a consistent and Bellman optimal mechanism
selection strategy σ that implements an incentive effi cient mechanism under (p1, p2),
when p|∅ = (p1, p2).

The remainder of this section proves the result. Our key task is to construct an
information processing device which provides just the right amount of information for
the agents to commit to the ineffi cient no-trade outcome.

There are many ways to for the information precessing device r to provide enough
information for the mechanism to work properly. Our central task is to design r in such
a way that it blocks further negotiation but still permits implementation the outcomes
prescribed by the incentive effi cient mechanism (aγ ,mγ).

Let (a subset of) the signal space be defined by ordered pairs

S∗ = {〈θ1, θ2〉 : θ1 ≥ θ2} ∪ {0}. (10)

Consider the following information processing device r∗ : Θ1 × Θ2 → ∆S∗. For any t,
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let κ(t) = #{t′ : t ≥ t′ and c1(t, γ) ≤ c2(t′, γ) or t ≥ t′ and c1(t′, γ) ≤ c2(t, γ)}. Then

r∗(· : θ1, θ2) =


1〈θ1,θ2〉, if θ1 > θ2,

1
κ(t)

( ∑
t′:t′≤t and c1(t,γ)≤c2(t′,γ)

1〈t,t′〉 +
∑

t′:t′≥t and c1(t′,γ)≤c2(t,γ)

1〈t′,t〉)

)
, if θ1 = θ2 = t.

10, if θ1 < θ2.
(11)

That is, a signal 〈θ1, θ2〉 such that c1(θ1, γ) ≥ c2(θ2, γ) may be sent only by the type
pair (θ1, θ2), and a signal 〈θ1, θ2〉 such that c1(θ1, γ) < c2(θ2, γ) and θ1 ≥ θ2 may be sent
by type pairs (θ1, θ2), (θ1, θ1),or (θ2, θ2). A signal ”0” may only be send by a type pair
(θ1, θ2) such that θ1 < θ2.

Further, define an implementation device g∗ : S∗ → {0, 1} × R such that, for any
s ∈ S∗,

g∗(s) =


(1,mγ(θ1, θ2)), if s = 〈θ1, θ2〉 and c1(θ1, γ)− c2(θ2, γ) ≥ 0,
(0, 0), if s = 〈θ1, θ2〉 and c1(θ1, γ)− c2(θ2, γ) < 0,
(0, 0), if s = 0.

(12)

By construction, the compound mechanism g∗ ◦ r∗ satisfies

if c1(θ1, γ)− c2(θ2, γ) ≥ 0, then g∗(r∗(θ1, θ2)) = (1,mγ(θ1, θ2)),

if c1(θ1, γ)− c2(θ2, γ) < 0, then g∗(r∗(θ1, θ2)) = (0, 0).

Hence, by Lemma 5,
g∗(r∗(·)) = (aγ ,mγ)(·).

By Proposition 2, (aγ ,mγ) is an incentive effi cient mechanism when p1 and p2 are regular.
We conclude:

Lemma 6 Let p1 and p2 be regular distributions. Then the mechanism g∗◦r∗ is incentive
effi cient.

Our aim is to show that the mechanism g∗ ◦ r∗ can be committed to under regular
distributions (p1, p2). To show this, construct a mechanism design strategy σ∗ that is
consistent and Bellman optimal, and implements g∗ ◦ r∗ when (p1, p2) is taken as the
initial belief p|∅.

Note first that when s = 〈θ1, θ2〉 such that c1(θ1, γ) ≥ c2(θ2, γ) or s = 0, the imple-
mented outcome g∗(s) is ex post effi cient. Since there is no mechanism that surplus domi-
nates such an outcome, the only issue is whether the planner can commit to the ineffi cient
no-trade outcome, i.e. when s = 〈θ1, θ2〉 such that θ1 > θ2 and c1(θ1, γ) < c2(θ2, γ). We
need to consider the posterior belief that is induced by such a signal.

Note that an information processing device r∗ may send a signal s =
〈
t, t
〉
such

that t > t and c1(t, γ) < c2(t, γ) under the following ordered pairs of types (θ1, θ2) :
(t, t), (t, t), (t, t). This implies that the signal

〈
t, t
〉
induces a posterior belief p|r∗,〈t,t〉

such that
supp(p|r∗,〈t,t〉) = {(t, t), (t, t), (t, t)}.
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Our task is to construct a mechanism selection rule σ∗ such that there is no credible
way to continue bargaining under the belief p|r∗,〈t,t〉 even though a mutually profitable
trading opportunity exists with strictly positive probability.

We construct a σ∗ that satisfies Bellman optimality and consistency on supp(p|h) =
{(t, t), (t, t), (t, t)}. For any h′, let σ∗(h′) depend on the distribution p|h′ ∈ ∆{(t, t), (t, t), (t, t)}.
Our construction in on induction on the cardinality of supp(p|h′). First, let g∗ : S∗ →
{0, 1} × R be defined by

g∗(s) =


(1, t), if s =

〈
t, t
〉
,

(1, (t+ t)/2), if s =
〈
t, t
〉
,

(1, t), if s = 〈t, t〉 ,
(0, 0), if s = 0.

(13)

Partition first the set of public histories H into two sets H0 and H1 such that, for any
h′ = (h, (r, s)) ∈ H,

h′ ∈
{
H1, if h ∈ H0 and {(t, t), (t, t)} ⊆supp(ph′),
H0 otherwise.

(14)

Construct a choice rule σ∗ such that, for any h′ = (h, (r, s)) ∈ H,

σ∗(h′) =





stop, if supp(p|h′) = {(t, t), (t, t), (t, t)}, s = 0, and h ∈ H0,

10, if supp(p|h′) = {(t, t), (t, t), (t, t)}, s 6= 0, and h ∈ H0,

r∗(θ) =

{ 〈
t, t
〉
, if θ = (t, t),

0, if θ 6= (t, t),
if supp(p|h) = {(t, t), (t, t), (t, t)} and h ∈ H1,



stop, if supp(p|h′) = {(t, t), (t, t)}, s = 0, and h ∈ H0,

10, if supp(p|h′) = {(t, t), (t, t)}, s 6= 0, and h ∈ H0,

r∗∗(θ) =


〈t, t〉 , if θ = (t, t),〈
t, t
〉
, if θ = (t, t),

0, if θ 6∈ {(t, t), (t, t)},
if supp(p|h) = {(t, t), (t, t)} and h ∈ H1,

 stop, if supp(p|h′) = {(t, t), (t, t)} and s = 〈t, t〉 ,
1〈t,t〉, if supp(p|h′) = {(t, t), (t, t)} and s 6= 〈t, t〉 , stop, if supp(p|h′) = {(t, t), (t, t)} and s =

〈
t, t
〉
,

1〈t,t〉, if supp(p|h′) = {(t, t), (t, t)} and s 6=
〈
t, t
〉
,{

stop, if supp(p|h′) = {(t, t)} and s =
〈
t, t
〉
,

1〈t,t〉, if supp(p|h′) = {(t, t)} and s 6=
〈
t, t
〉
,{

1〈t,t〉, if supp(p|h′) = {(t, t)} and s 6=
〈
t, t
〉
,

stop, if supp(p|h′) = {(t, t)} and s =
〈
t, t
〉
, stop, if supp(p|h′) = {(t, t)} and s = 〈t, t〉 ,

1〈t,t〉, if supp(p|h′) = {(t, t)} and s 6= 〈t, t〉 .
(15)
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Lemma 7 Let supp(p|∅) = {(t, t), (t, t), (t, t)} with t > t. There is a consistent, Bellman
optimal, and admissible choice rule σ∗ such that σ∗(h) = (0, 0).

Proof. First we describe the choice set Cσ
∗
(h) for each public history h. There are

9 distinct cases:

1. supp(p|h) = {(t, t), (t, t), (t, t)} and h ∈ H0. Then Cσ
∗
(h)\{10} = ∅.

To see this, suppose on the contrary that r ∈ Cσ∗(h)\{10}. Then:

(a) {(t, t), (t, t)} 6⊆supp(p|h,(r,s)) for all s ∈ r(supp(p|h)), by the construction of
σ∗(h, (r, s)),

(b) g∗(s) ∈ {(1, t), (1, (t + t)/2), (1, t)}, for all s ∈ r(supp(p|h)), by (a), and the
construction of σ∗(h, (r, s)),

(c) g∗(s) = (1, t), for all s ∈ r(t, t) for all t ∈ {t, t}, by (b) and individual
rationality,

(d) g∗(s) = (1, t), for all s ∈ r(t, t) for all t ∈ {t, t}, by (b) and individual
rationality,

(e) g∗(s) = (1, t), for all s ∈ r(t, t) for all t ∈ {t, t}, by (c) and incentive compat-
ibility,

(f) g∗(s) = (1, t), for all s ∈ r(t, t) for all t ∈ {t, t}, by (d) and incentive compat-
ibility.

(g) By (c) and (e), g∗(s) = (1, t) for all s ∈ r(t, t′) for all (t, t′) ∈ {(t, t), (t, t), (t, t)}
and, by (d) and (f), g∗(s) = (1, t) for all s ∈ r(t, t′) for all (t, t′) ∈ {(t, t), (t, t), (t, t)},
a contradiction.

2. supp(p|h) = {(t, t), (t, t), (t, t)} and h ∈ H1. Then Cσ
∗
(h) = {r ∈ IC(p|h) : g∗(s) =

σ∗(h, (r, s)) for all s ∈supp(p|h)}.

3. supp(p|h) = {(t, t), (t, t)} and h ∈ H0. Then Cσ
∗
(h) = {r ∈ IC(p|h) : g∗(s) =

σ∗(h, (r, s)) for all s ∈supp(p|h)}.

4. supp(p|h) = {(t, t), (t, t)} and h ∈ H1. Then Cσ
∗
(h) = {r ∈ IC(p|h) : g∗(s) =

σ∗(h, (r, s)) for all s ∈supp(p|h)}.

5. supp(p|h) = {(t, t), (t, t)}. Then Cσ∗(h) = {1〈t,t〉}, by incentive compability, indi-
vidual rationality, and the construction of σ∗(h, ·).

6. supp(p|h) = {(t, t), (t, t)}. Then Cσ∗(h) = {1〈t,t〉}, by incentive compability, indi-
vidual rationality, and the construction of σ∗(h, ·).

7. supp(p|h) = {(t, t)}. Then Cσ∗(h) = {1〈t,t〉}, by the construction of σ∗(h, ·).

8. supp(p|h) = {(t, t)}. Then Cσ∗(h) = {1〈t,t〉}, by the construction of σ
∗(h, ·).
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9. supp(p|h) = {(t, t)}. Then Cσ∗(h) = {1〈t,t〉}, by the construction of σ
∗(h, ·).

To see that σ∗ is consistent:

• In all cases, if σ∗(h) = stop, then consistency is automatically implied. Suppose
below that σ∗(h) 6= stop.

• In Cases 1, 3, 5, 6, 7, 8, and 9, consistency is implied by the fact that Cσ∗(h) =
{σ∗(h)}.

• In Case 2, σ∗(h) = r∗ such that

r∗(θ) =

{ 〈
t, t
〉
, if θ = (t, t),

0, if θ 6= (t, t),

There are two cases, s =
〈
t, t
〉
and s = 0. In the former, g∗(

〈
t, t
〉
) = (1, (t+ t)/2)

and supp(p|h,(r,〈t,t〉)) = {(t, t)}. By construction σ∗(h, (r∗,
〈
t, t
〉
)) = g∗(

〈
t, t
〉
). In

the latter case, g∗(0) = (0, 0) and supp(p|h,(r,0)) = {(t, t), (t, t)}. By construction,
since (h, (r, 0)) ∈ H0, σ∗(h, (r∗, 0)) = g∗(0), implying consistency in Case 2.

• In Case 4, σ∗(h) = r∗∗ such that

r∗∗(θ) =


〈t, t〉 , if θ = (t, t),〈
t, t
〉
, if θ = (t, t),

0, if θ 6∈ {(t, t), (t, t)}.

Since supp(p|h) = {(t, t), (t, t)}, only signals s =
〈
t, t
〉
and s = 〈t, t〉 materialize

with positive probability. In the former case, g∗(
〈
t, t
〉
) = (1, t) and supp(p|h,(r∗∗,〈t,t〉)) =

{(t, t)}. By construction, σ∗(h, (r∗∗,
〈
t, t
〉
)) = g∗(

〈
t, t
〉
) when s =

〈
t, t
〉
. In the

latter case, g∗(〈t, t〉) = (1, t) and supp(p|h,(r∗∗,〈t,t〉)) = {(t, t)}. By construction,
σ∗(h, (r∗∗, 〈t, t〉)) = g∗(〈t, t〉), implying consistency when s = 〈t, t〉. Associate belief
p|h,(r∗∗,0) = p|h to the off-equilibrium signal s = 0. Then, since (h, (r∗∗, 0)) ∈ H0,
σ∗(h, (r∗∗, 0)) = g∗(0), implying consistency when s = 0.

To see that σ∗ is Bellman optimal when σ∗(h) 6= stop :

• In Case 1, Cσ∗(h)\{10} = ∅, and hence σ∗(h) = 10 is a Bellman optimal choice in
this case.

• In Case 2, v(g∗ ◦ r∗, p|h) = (t − t)p(t, t) ≥ v(g∗ ◦ r, p|h), for all budget balanced
mechanisms g∗ ◦ r. Hence σ∗(h) = r∗ is a Bellman optimal choice in this case.

• In Case 3, v(g∗ ◦ 10, p|h) = 0 = v(g∗ ◦ r, p|h), for all budget balanced mechanisms
g∗ ◦ r. Hence σ∗(h) = 10 is a Bellman optimal choice in this case.
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• In Case 4, v(g∗ ◦ r∗∗, p|h) = 0 = v(g∗ ◦ r, p|h), for all budget balanced mechanisms
g∗ ◦ r. Hence σ∗(h) = r∗∗ is a Bellman optimal choice in this case.

• In Cases 5, 6, 7, 8, and 9, Cσ∗(h) = {σ∗(h)}, and hence σ∗(h) is a Bellman optimal
choice in these cases.

To see that σ∗ is Bellman optimal when σ∗(h) = stop :

• In Case 1, Ĉσ∗(h)\{10} ⊆ Cσ
∗
(h)\{10} = ∅, and hence σ∗(h) = stop is a Bellman

optimal choice in this case.

• In Case 3, v(g(0), p|h) = 0 = v(g∗ ◦ r, p|h), for all budget balanced mechanisms
g∗ ◦ r. Hence σ∗(h) = stop is a Bellman optimal choice in this case.

• In Cases 5, 6, 7, 8, and 9, g(s) ∈ X becomes implemented such that Cσ
∗
(h) = {1s}.

Hence σ∗(h) = stop is a Bellman optimal choice in these cases.

To complete the description of σ∗ that meets the conditions of Theorem 2, let off-
equilibrium path h mechanism selection rule σ∗(h) be anything that would consitute a
Bellman optimal and consistent rule in the continuation game. By Theorem 1, such a
continuation strategy does exists. Since under p|∅ the mechanism σ∗(∅) is the second
best, the planner has no incentive to deviate it in the first stage. Hence the constructed
σ∗ is Bellman optimal and consistent chice rule, staring from p|∅

A Appendix

A.1 Omitted proofs of Section 5

Proof of Proposition 2. Denote

a1(θ1) =
∑
θ2

p2(θ2)a(θ1, θ2),

a2(θ2) =
∑
θ1

p1(θ1)a(θ1, θ2),

and use the shorthand

V1(θ1) =
∑
θ2

p (θ2 : θ1) [a(θ1, θ2)θ1 −m(θ1, θ2)],

V2(θ2) =
∑
θ1

p (θ1 : θ2) [m(θ1, θ2)− a(θ1, θ2)θ2].
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Denoting t′ the immediate predecessor of t, incentive compatibility of a mechanism
implies

a1(θ′1)(θ1 − θ′1) ≤ V1(θ1)− V1(θ′1) ≤ a1(θ1)(θ1 − θ′1).

a2(θ′2)(θ2 − θ′2) ≥ V2(θ′2)− V2(θ2) ≥ a2(θ2)(θ2 − θ′2).

Thus a1 is increasing, a2 is decreasing, and

V1(θ1) ≥
∑
t≤θ′1

a1(t) + V1(0),

V2(θ2) ≥
∑
t≥θ′2

a2(t) + V2(1).

Let

Pi(θi) =
∑
t≤θi

pi(t),

Ai(θi) =
∑
t≤θi

ai(t).

Then

P1(θ1)A1(θ1) =
∑
t≤θ1

P1(t)[A1(t)−A1(t′)] +
∑
t≤θ1

[P1(t)− P1(t′)]A1(t′)

=
∑
t≤θ1

P1(t)a1(t) +
∑
t≤θ1

p1(t)A1(t′).

Thus ∑
t

p1(t)A1(t′) = P1(1)A1(1)−
∑
t

P1(t)a1(t) (16)

=
∑
t

a1(t)(1− P1(t)).

And similarly for the agent 2 :∑
t

p2(t)[A2(1)−A2(t′)] = A2(1)−
∑
t

p2(t)A2(t′) (17)

=
∑
t

a2(t)P2(t).

The planner’s problem can be written

max
a(r(·))

∑
θ1

∑
θ2

p1(θ1)p2(θ2)(θ1 − θ2)a(r(θ1, θ2))

s.t.
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∑
θ1

∑
θ2

p1(θ1)p2(θ2)(θ1 − θ2)a(r(θ1, θ2)) =
∑
θ1

p1(θ1)V1 (θ1) +
∑
θ2

p2(θ2)V2 (θ2) (18)

A1(θ1) ≥ V1 (θ1)− V1 (0) ≥ A1(θ′1), for all θ1 (19)

A2(1)−A2(θ2) ≥ V2 (θ2)− V2 (1) ≥ A2(1)−A2(θ′2), for all θ2

(20)

V1 (θ1) ≥ 0 for all θ1, V2 (θ2) ≥ 0 for all θ2 (21)

where (18) is the ex ante budget balance condition, (19) and (20) are the incentive
compatibility constraints, and (21) is the participation constraint.

Since the right hand side inequalities of (19) and (20) imply∑
θ1

p1(θ1)V1 (θ1) ≥
∑
θ1

p1(θ1)A1(θ′1) + V1(0),

∑
θ2

p2(θ2)V2 (θ2) ≥
∑
θ2

p2(θ2)[A2(1)−A2(θ′2)] + V2(1),

(16), (17), and (18) result in

V1(0) + V2(1) +
∑
θ1

a1(θ1)(1− P1(θ1)) +
∑
θ2

a2(θ2)P2(θ2)

≤
∑
θ1

∑
θ2

p1(θ1)p2(θ2)(θ1 − θ2)a(r(θ1, θ2)),

or, more compactly,∑
θ1

∑
θ2

p1(θ1)p2(θ2)

[(
θ1 −

1− P1(θ1)

p1(θ1)

)
−
(
θ2 +

P2(θ2)

p2(θ2)

)]
a(θ1, θ2) ≥ 0. (22)

Maximizing the objective function with respect to (22), and interpreting γ/(1−γ) as the
Lagrange multiplier, gives the desired programme. Since, at the optimum, (22) holds as
equality, the solution to the programme also meets the left hand side inequalities of (19)
and (20). Since this implies that a1 is increasing and a2 is decreasing, it also follows
that the participation constraint (21) is met whenever V1(0) ≥ 0 and V2(1) ≥ 0 which
hold as equality at the optimum. Finally, the optimality of aγ under regular p1 and p2

follows by maximizing the objective function pointwisely.

Proof of Lemma 5. Our task is to construct anm(·) that prescribes zero monetary
transfer when trade does not take place. That is

m(r(θ1, θ2)) = 0 whenever c1(θ1, γ)− c2(θ2, γ) < 0.

Denote by aγ the incentive effi cient allocation rule under Lagrange multiplier γ. Denote
by mγ

1 and m
γ
2 the implied expected transfers from 1 and to 2 :

mγ
1(θ1) = aγ1(θ1)θ1 −

∑
t<θ′1

aγ1(t), for all θ1 ∈ T

mγ
2(θ2) = aγ2(θ2)θ2 +

∑
t>θ′2

aγ2(t), for all θ2 ∈ T.
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The ex ante budget balance of the incentive effi cient mechanism implies∑
θ1

p1(θ1)mγ
1(θ1) =

∑
θ2

p2(θ2)mγ
2(θ2). (23)

Construct m(·) such that

m(θ1, 0) = mγ
1(θ1), for all θ1 < 1,

m(1, θ2) = mγ
2(θ2), for all θ2 > 0,

m(θ1, θ2) = 0, for all (θ1, θ2) such that θ1 < 1 and θ2 > 0.

To complete the description of m, let m(1, 0) satisfy

p1(1)m(1, 0) +
∑
t<1

p1(t)mγ
1(t) = mγ

2(0), (24)

p2(0)m(1, 0) +
∑
t>0

p2(t)mγ
2(t) = mγ

1(1). (25)

Then m(·) prescribes zero transfer under no-trade and

m1(θ1) = mγ
1(θ1), for all θ1 ∈ T,

m2(θ2) = mγ
2(θ2), for all θ2 ∈ T.

Thus m is consistent with the incentive effi cient allocation aγ rule. However, since a
single variable m̄ is determined by two equations (24) and (25), we need to verify that
a desired m(1, 0) does exist. The remainder of the proof establishes this.

First, fix any m(1, 0) that completes the description of m. Since the order of sum-
mation does not matter,∑

θ1

p1(θ1)
∑
θ2

p2(θ2)m(θ1, θ2) =
∑
θ2

p2(θ2)
∑
θ1

p1(θ1)m(θ1, θ2). (26)

By construction,∑
θ1

p1(θ1)
∑
θ2

p2(θ2)m(θ1, θ2) =
∑
t<1

p1(t)mγ
1(t) + p1(1)

(
p2(0)m(1, 0) +

∑
t>0

p2(t)mγ
2(t)

)
∑
θ2

p2(θ2)
∑
θ1

p1(θ1)m(θ1, θ2) = p2(0)

(
p1(1)m(1, 0) +

∑
t<1

p1(t)mγ
1(t)

)
+
∑
t>0

p2(t)mγ
2(t)

Now letting m(1, 0) be defined by (24), it follows that∑
θ2

p2(θ2)
∑
θ1

p1(θ1)m(θ1, θ2) =
∑
θ2

p2(θ2)mγ
2(θ2).

By (26) and (23), ∑
θ1

p1(θ1)
∑
θ2

p2(θ2)m(θ1, θ2) =
∑
θ1

p1(θ1)mγ
1(θ1).

Thus m(1, 0) also satisfies (25).
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