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Abstract

We analyze large symmetric auctions with conditionally i.i.d common val-

ues and risk averse bidders. Our main result characterizes the asymptotic

equilibrium price distribution for the �rst- and second-price auctions. As an

implication, we show that with constant absolute risk aversion (CARA), the

second-price auction raises signi�cantly more revenue than the �rst-price auc-

tion. While this ranking seems robust in numerical analysis also outside the

CARA speci�cation, we show by counterexamples that the result does not

generalize to all risk averse utility functions.

1 Introduction

In common value auctions, winning conveys additional information of the other bid-

ders�s private signals. The exact information that the winner obtains depends on the

auction format. At least since Milgrom &Weber (1982), the importance of these con-

siderations has been recognized for the expected revenue. In this paper, we consider

large common value auctions where a single object is sold to a large number of risk-

averse bidders. It is known that with risk-neural bidders, �rst-price and second-price
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auctions generate asymptotically the same expected revenue to the seller (Bali &

Jackson (2002) and Kremer (2002)). We show here that such an asymptotic revenue

equivalence result does not hold with risk-averse bidders.

Our main result is the characterization of the asymptotic probability distribution

for the equilibrium price in the �rst- and second-price auction formats. We show that

when the utility function takes the constant absolute risk aversion (CARA) form, the

second-price auction generates signi�cantly more revenue in expectation.

Our analysis relies on two observations applicable in the limit when the number

of bidders increases towards in�nity. First, we observe that the equilibrium infer-

ence reduces to a Bayesian learning problem about the parameter of an exponential

distribution. To understand this, note that the bidding strategies in the symmetric

Bayesian Nash Equilibrium of each of the two auction formats are strictly increasing,

and therefore the realized price is a function of the highest signal within the bidder

population in the �rst-price auction, and of the second highest signal in the second-

price auction. In the limit with a large number of bidders, the information content

of those order statistics is equivalent to information in exponential random variables

with an unknown mean, and hence the bidders learn about the value of the object as

if they observed such random variables. The true value of the object for sale remains

uncertain as long as the most favorable signal is not perfectly informative. We have

earlier used this same observation to compute equilibrium timing decisions in a social

learning problem in Murto & Välimäki (2013).

Second, we show that in auctions with a large number of symmetric bidders the

winner must be indi¤erent between winning and not winning. This requirement

arises from an arbitrage condition: large auctions have many agents with similar

information and therefore competition for the scarce resource drives out rents. This

implies that the expected utility of buying the object at the equilibrium price, con-

ditional on the information conveyed by the price, must be equal to the utility of not

getting the object.

Combining these two observations, we can summarize our main �nding as follows.

The equilibrium price can be written as p (Z), where Z is a random variable whose

distribution depends on the auction format, and function p (�) gives the willingness
to pay, i.e. price for which a buyer is indi¤erent between buying the object and not,
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conditional on information inferred by the particular realization of Z. In the �rst-

price auction, Z is an exponentially distributed random variable with unknown mean,

while in the second price auction it is the sum of two conditionally i.i.d. exponential

variables (with the same unknown mean). Since the unknown parameter depends

on the true value of the object, the realization of Z leads to a new posterior by

Bayes�rule. Being a deterministic function of Z, p (Z) is itself a random variable

whose distribution can be derived from that of Z. It is worth emphasizing that even

conditional on the true value of the object, the equilibrium price remains random.

This can be traced to our assumption that individual signals have bounded precision

so that we are in an environment where full information aggregation in the large

game limit is not possible, in contrast to e.g. Wilson (1977).

Our revenue ranking result stems from the di¤erence in the informativeness of

equilibrium price across the auction formats. Even though the interim expected

payo¤ of each individual bidder converges to zero in both formats due to competitive

bidding, the distribution of ex post gains matters as long as the bidders are risk-

averse. More information leaves less uncertainty about ex-post gains, and since

equilibrium price is more informative in the second-price auction than in the �rst-

price auction, a CARA bidder is willing to pay more on average in that auction

format. This implies a higher ex-ante expected revenue in the second-price auction

in comparison to the revenue obtained in the �rst-price auction. We demonstrate

numerically that this di¤erence is signi�cant and initially increasing in the degree

of risk aversion. For extremely risk averse bidders, the willingness to pay converges

to the lowest possible value of the object and hence the revenue di¤erence between

the auction formats vanishes. Although our statistical analysis is in the limit with a

large number of bidders, the equilibrium strategies are de�ned for any �nite auction,

and therefore a straightforward continuity argument su¢ ces to note that the ranking

holds for a su¢ ciently large �nite auction.

Based on the intuition about the informativeness of the equilibrium price, it seems

natural to conjecture that our revenue ranking result should generalize beyond CARA

preferences. However, as already shown in a di¤erent context by Milgrom & Weber

(1982), an unambiguous relationship between average willingness to pay for an object

and informativeness of a signal about its value exists only if utility is CARA. It is
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therefore perhaps not surprising that we have not been able to formally extend the

result to another class of utility functions. However, our numerical investigations

seem to support the revenue ranking suggested by the CARA case. For reasonable

parameter values, we show that the revenue ranking in the constant relative risk

aversion (CRRA) remains qualitatively similarly to the CARA case. At the same

time, we show by carefully speci�ed examples that the revenue ranking result can

indeed be reversed even in the CRRA case.

It is tempting to extend our analysis to more general auction formats. Within

the common values model that we analyze, a problem arises in the �rst step of

the analysis. It is by no means clear that formats such as all-pay auction have a

monotonic pure-strategy equilibrium with a �nite number of bidders. Hence our

technique that relies on the extreme order statistics in a growing sample is no longer

applicable in that case. The key requirement for generalizing the insights from the

current paper is therefore that the �nite version of the game should have a symmetric

monotonic equilibrium in pure strategies.

This paper is related to the literature on information aggregation in large auc-

tions. Wilson (1977) demonstrated how equilibrium price in a large auction can

converge exactly to the true value of the object. However, as shown formally by

Milgrom (1979), that result holds only under a special condition of the signal struc-

ture. This condition in essence requires that for any value realization there is a

signal that can distinguish that value from all lower values. Our model does not

allow any individual signal to be that informative. Like e.g. Pesendorfer & Swinkels

(1997), we maintain that the likelihood ratio for any signal across di¤erent values

is bounded, and this precludes full information aggregation in the auction formats

that we study. Kremer (2002) works with the same statistical setup as we do with

risk-neutral bidders. While he stresses the fact that equilibrium price distribution

follows from inference based on order statistics in large samples, there is no explicit

characterization of the limiting distribution. Using a simple result on extreme order

statistics in large samples, we �nd an explicit characterization for the posterior belief

on the value of the object. At the same time, we extend the analysis to risk-averse

buyers, which makes the question of revenue comparison interesting in the �rst place;

with risk neutral buyers expected revenue is the same in both auction formats.
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Our revenue ranking result is quite di¤erent from existing papers that analyze

the e¤ect of risk aversion on expected revenue. It is useful to distinguish those

results that are in the context of small auctions from asymptotic results such as

ours. In the small auction context it has been shown that risk-aversion tends to

favor �rst-price auction over second-price auction since the expected payment is less

risky in the former (see e.g. Holt (1980), Matthews (1987), and Maskin & Riley

(1984)). However, these results are in private values environments, and hence due to

a quite di¤erent mechanism to ours. With private values, increasing the number of

bidders leads to the convergence of the price to the maximal valuation in the bidder

population, and as a result, the revenue di¤erence between �rst- and second-price

auctions disappears in the limit. In the case of large numbers of bidders Fibich &

Gavious (2010) shows that in all-pay auctions, risk-aversity a¤ects expected revenue

in large auctions even when the valuations are private. The key observation is that

in large auction the bidder with the highest signal faces (at the moment of bidding) a

non-trivial risk of losing the auction. With all-pay auctions, bidders are always better

o¤ when winning, and as a consequence payo¤ relevant risk remains at the bidding

stage. Our method of analysis based on extreme order statistics in fact provides a

means to compute explicitly the expected revenues for private value all-pay auctions

applicable to both risk-averse and risk-neutral bidders.

The paper is organized as follows: Section 2 sets up the basic model. Section 3

establishes the basic statistical properties of equilibrium learning. Section 4 shows

that second-price auction dominates �rst-price auction in terms of expected revenue

for CARA utilities, and demonstrates that this di¤erence is signi�cant. Section 5

discusses how our revenue ranking result extends beyond CARA utilities. Section 6

concludes.

2 Setup

A single object is for sale. Let V denote the common (random) value of the ob-

ject. There are n bidders, and prior to participating in an auction, each bidder

i 2 f1; :::; ng observes a signal �i 2 [0; 1] distributed according to a joint density
g (�i; v) that is identical across the bidders. Conditional on V = v; �i is independent
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of �j for i 6= j: For each v 2 (0;1), there is a continuous and bounded condi-
tional density function g (�i jv ) : A high signal realization is favorable news about

the value of the object, which we formalize by requiring strict monotone likelihood

ratio property (MLRP):
g (�0 jv0 )
g (� jv0 ) >

g (�0 jv )
g (� jv )

whenever �0 > � and v0 > v.

The prior density on V is denoted by � (v), and has a �nite mean.1 Since we are

ultimately interested in large auctions, our interest will focus around players with

very high signals and we de�ne


v := g (1 jv ) <1:

By strict MLRP, 
v is strictly increasing in v: Note that this also implies that 
v > 0

for all v > 0, and hence even the most favorable signal possible, �i = 1, does not

rule out any realization of v. In other words, information content of each individual

signal realization is bounded. This has the important consequence that even when n

grows, equilibrium price cannot reveal perfectly v (see Wilson (1977) and Milgrom

(1979) for the opposite case).2

After observing �i; each i chooses a bid bi (�i) : Bidder i wins with positive prob-

ability only if bi � bj for all j:We consider �rst-price (FPA) and second-price (SPA)
auction formats so that the winning bidder pays the kth highest bid b(k) for k 2 f1; 2g,
respectively. The losing bidders do not make any payments. The players maximize

their expected utility, and we let u
�
v � b(k)

�
denote the utility of the bidder who

receives the good. The utility of not receiving the good is u (0). We assume that

u (�) is a continuous, strictly increasing and (weakly) concave function.
The bidders do not know each others�realized bids when preparing their own bids.

For the case of risk-neutral bidders, the form of the symmetric equilibrium strategies

1We assume in most of the paper that this density is �nite and continuous for all v > 0. However,

nothing changes substantially if we assume a discrete probability distribution for v, as we will do

in Section 5.2.
2As pointed out in Wilson (1977), risk aversion would play no role in a model where equilibrium

price is fully revealing.
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is documented in Milgrom & Weber (1982). A similar construction holds for the

symmetric case with risk-averse bidders. For our purpose, the key requirement is

that bids be strictly increasing in signals. Summarizing from earlier literature, we

state the following:

Proposition 1 In both �rst- and second-price auction formats, a unique equilibrium
strategy pro�le exists in the class of symmetric and strictly increasing bid functions.

Proof. For the second price auction, Theorem 3.1 of Milgrom (1981) gives existence
and characterization of a strictly increasing symmetric equilibrium. Uniqueness in

the class of symmetric bid functions is given in the Theorem by Levin & Harstad

(1986). Alternatively, the proof of Pesendorfer & Swinkels (1997) in the risk neutral

case can be adapted for the present case. For the �rst price auction, the result can

be found in McAdams (2007).

For a game with n players, we denote the equilibrium bid function by b1n (�) for

the �rst price auction and b2n (�) for the second price auction. We are interested

in the properties of the model as n increases towards in�nity. In an equilibrium

where bidders use strictly monotonic strategies, the realized price is a function of

the highest or second highest signal in the bidder population. As a result, the price

distribution in large auctions can be derived from the statistical properties of the

highest order-statistics in large samples. We turn to that next.

3 Price distribution

Consider a random sample f�1; :::; �ng of realized signals. Since the equilibrium

bidding strategies are strictly increasing in the bidders�signals, the order statistics

�(1)n and �(2)n determine the equilibrium prices P 1n = b
1
n

�
�(1)
�
and P 2n = b

2
n

�
�(2)
�
for

the �rst- and second-price auctions, respectively. We aim to derive the probability

distributions for those prices. In order to do that, we need to characterize the

information that winning in a large auction entails.

Under our signal density assumptions �(1)n and �(2)n converge in probability to a

degenerate random variable at the upper bound of the support regardless of the true
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value v. Therefore, to uncover the information content of winning, we must �nd a

scaling for the signals that varies appropriately in n.

Consider �rst the informational content of the event that bidder i wins the auction

after observing signal �i = � < 1: Since the signals are assumed to be independent

conditional on V; the probability of winning when V = v is given by:

Prf�(1)n�1 � � jV = vg = G (� jv )
n�1 :

Under the assumptions that we have made, G (� jv ) < 1 for all � < 1. Hence, for
a �xed � < 1, this probability converges to zero as n grows. Consider therefore the

probability of the event f�(1)n �
�
1� z

n

�
g as n grows. We have:

G
�
1� z

n
jv
�
= 1� z
v

n
+ o

�
1

n

�
;

where 
v = g (1 jv ). Hence

lim
n!1

Prf�(1)n � 1� z

n
jV = vg = lim

n!1

�
1� z
v

n

�n
= e�
vz:

Denoting

Z(1)n := n �
�
1� �(1)n

�
, (1)

we can write this as

lim
n!1

PrfZ(1)n > z jV = vg = e�
vz.

This equation says that Z(1)n converges in distribution to an exponential random

variable with parameter 
v as n ! 1: Hence, (??) gives the scaling that we are
looking for: since Z(1)n is a deterministic function of �(1)n , its realized value gives

exactly the same information as �(1)n , for each n. Moreover, since its probability

distribution converges to an exponential distribution as n ! 1, we note that the
information content of �(1)n converges to that of an exponential random variable as

well.

A similar computation shows that if we let Z(2)n := n �
�
1� �(2)n

�
; then

lim
n!1

PrfZ(2)n � Z(1)n > z jV = vg = e�
vz;

and furthermore Z(2)n � Z(1)n is independent of Z(1)n conditional on V = v:
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We summarize these results in the following proposition. The proof for the part

concerning Z(2)n � Z(1)n (and an immediate generalization to any positive integer k)

is given in Murto & Välimäki (2013).3

Proposition 2 Let Z(k)n := n �
�
1� �(k)n

�
denote the scaled kth order statistic in the

sample f�1; :::; �ng, k = 1; 2. Then, the vector
h
Z
(1)
n ; Z

(2)
n � Z(1)n

i
converges in distri-

bution to a vector of two independent exponential random variables with parameter


v.

For our purpose the key message of this proposition is that as n increases towards

in�nity, the information content of winning an auction converges to the informa-

tion content of observing one or two independent exponentially distributed random

variables with an unknown parameter 
v. Intuitively, �
(1)
n carries the information

available to the winner in the �rst-price auction, and with appropriate scaling we see

that this corresponds to one exponential random variable with unknown mean 
v.

Similarly, �(2)n carries the additional information that the second highest bid incorpo-

rates into the price of the second-price auction, and with an appropriate scaling this

corresponds to an additional exponential random variable with the same unknown

mean.

Notice that the �rst and second order statics remain imperfectly informative

as the sample size increases. This is a consequence of our assumption on signal

distribution with a compact support and continuous and strictly positive conditional

density: even the highest possible signal conveys only a limited amount of good news.

Such a signal assumption is made for example in Pesendorfer & Swinkels (1997) and

Kremer (2002) while an opposite case that leads to fully informative extreme order

statistics appears in e.g. Wilson (1977) and Milgrom (1981).

To anticipate the revenue comparisons to be coverd in Sections 4 and 5, note that

the posterior on V conditional on Z(1) is quite di¤erent from the posterior conditional

on Z(2): For risk-averse bidders, these di¤erent posterior distributions induced by the

di¤erent auction formats imply di¤erent monetary lotteries conditional on winning

3For a more general treatment of the distribution of extreme statistics, see e.g. the textbook

de Haan & Ferreira (2006).
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in the auction. Hence it is not surprising that the expected payo¤s and the expected

revenue to the seller turn out to be di¤erent across di¤erent auction formats.

The main insight of this paper is that in the large-game limit, the equilibrium

price distribution is pinned down by two observations. First, inference is equivalent

to exponential learning as formalized by Proposition 2 above. Second, competition

dissipates the bidders�information rents. So far we have only discussed the former

observation without linking it to bidding strategies. To formalize the latter observa-

tion, we de�ne willingness to pay under exponential learning:

De�nition 1 The willingness to pay bk (z) is the highest price that a buyer is willing
to pay, conditional on Z(k) = z where Z(k) �Gamma(k; 
v). That is, bk (z) is the
solution to

EV [u
�
V � bk (z)

� ��Z(k) = z ] = u (0) . (2)

Since u is strictly increasing, this solution must be unique if it exists. For exis-

tence, we need some additional assumption. For now, we assume for this purpose

that the domain of u (�) is the entire real line. This implies that arbitrarily high
bids are feasible. Since u is strictly increasing and V has a �nite mean, we have

EV [u (V � b)
��Z(k) = z ] < u (0) for high enough b, which in turn guarantees the ex-

istence of a solution to (2). In Section 5 we will discuss an alternative assumption

to guarantee existence of bk (z) for constant relative risk aversion utility function,

which has a domain bounded from below.

When z < z0, the posterior density on v based on z dominates posterior based on

z0 in the sense of �rst-order stochasic dominance. This implies that b (z) is a strictly

decreasing function that attains its maximum value at z = 0. This just says that a

low realization of z is good news about the value, and hence the willingness to pay

is at its highest when z is at its lowest. At signal � = 1 or equivalently at z = 0;

winning the auction gives no further information. Since we have assumed bounded

likelihood ratios, the bidder with this signal is still uncertain about the value of V:

For any signal � < 1; we have zn := n (1� �)!1 as n!1: Our assumption that

v increases in v then implies that in the limit as n grows, winning with a signal

� < 1 implies that the posterior distribution on V converges to a point mass on

V = 0:
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To compute explicitly the expected utility in (2), one �rst derives the posterior

density gk (v jz ) of v conditional on Z(k) = z by Bayes� rule. The density of z

conditional on v is given by (
v)
k

�(k)
zk�1e�(
v)z, and therefore, Bayes�rule gives:

gk (v jz ) =
(
v)

k

�(k)
zk�1e�(
v)z� (v)R1

0
(
v)

k

�(k)
zk�1e�(
v)z� (v) dv

.

The expected value of u
�
V � bk (z)

�
can therefore be computed as follows:

EV [u
�
V � bk (z)

� ��Z(k) = z ] = Z 1

0

u
�
v � bk (z)

�
gk (v jz ) dv:

We next give our main result, which states that the equilibrium price in kth-price

auction converges to the willingness to pay conditional on the random variable Z(k),

k 2 f1; 2g, as the number of bidders becomes large. In other words, in large auctions,
equilibrium inference is based on exponential learning and all the rents are competed

away.

Proposition 3 As n!1;

1. The price realization P 1n = b
1
n

�
�(1)n

�
in a �rst-price auction (FPA) converges in

distribution to b1
�
Z(1)

�
, where Z(1) � Exp (
v).

2. The price realization P 2n = b
2
n

�
�(2)n

�
in a second-price auction (SPA) converges

in distribution to b2
�
Z(2)

�
, where Z(2) � Gamma (2; 
v).

Proof. Consider �rst the �rst-price auction. We show that for every z > 0,

limn!1 b
1
n

�
1� z

n

�
= b1 (z).

Fix a z > 0. Suppose that lim supn!1 b
1
n

�
1� z

n

�
> b1 (z). Then, by Proposition

2 we can pick a large enough n0 such that

EV [u
�
V � b1n0

�
1� z

n

�� ����(1) = � ] < EV [u �V � b1 (z)� ��Z(1) = z ] = u (0) ;
which means that b1n0

�
1� z

n0

�
is not a best-response in a game with n0 players, and

hence cannot be an equilibrium bid. Since this is a contradiction, we have:

lim sup
n!1

b1n

�
1� z

n

�
� b1 (z) :
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Suppose next that lim infn!1 b1n
�
1� z

n

�
< b1 (z). Let �(1)�i;n := maxf�1; :::; �i�1; �i+1; :::; �ng:

Using again Proposition 2, we can �nd a � > 0 and an increasing sequence of positive

integers fnkg1k=1 such that for every k, we have

EV [u
�
V � b1nk

�
1� z

nk

�� ���� �i = 1� z

nk
; �
(1)
�i;nk � 1�

z

nk
]

> EV [u
�
V � b1 (z)

� ��Z(1) = z ] + � = u (0) + �,
and

Pr

�
�
(1)
�i;nk � 1�

z

nk

���� �i = 1� z

nk

�
> �

for some � > 0. By the continuity of g (� jv ), there is an " > 0 such that

EV [u
�
V � b1nk

�
1� z

nk

�� ���� �i = 1� "; �(1)�i;nk � 1� z

nk
] > u (0) +

�

2
,

and

Pr

�
�
(1)
�i;nk � 1�

z

nk
j �i = 1� "

�
>
�

2
;

so that any player with signal � > 1� " will make an expected payo¤ strictly higher
than �

1� �
2

�
� u (0) + �

2
�
�
u (0) +

�

2

�
= u (0) +

�2

4

by bidding b1nk (1� z=nk). Letting k be arbitrarily large (so that nk ! 1), the
number of such players goes to in�nity, and therefore their expected joint surplus

explodes. This is a contradiction and it follows that lim infn!1 b1n
�
1� z

n

�
� b1 (z).

Since we showed above that lim supn!1 b
1
n

�
1� z

n

�
� b1 (z), it must be that

lim sup
n!1

b1n

�
1� z

n

�
= lim inf

n!1
b1n

�
1� z

n

�
= lim

n!1
b1n

�
1� z

n

�
= b1 (z) .

Since the result holds for all z, this implies that

b1n

�
�(1)
�

d! b1
�
Z(1)

�
,

where d! denotes convergence in distribution.
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Consider next the second-price auction. As shown in Milgrom (1981), the equi-

librium bid b2n (�) is the unique solution to

EV [u
�
V � b2n (�)

� ����(1) = �(2) = � ] = u (0) . (3)

Consider two independent exponential random variables Z(1) � Exp (
v) and Z(2)�
Z(1) � Exp (
v). Then, for a �xed z > 0, we have (by Proposition 2):

lim
n!1

[ EV [u
�
V � b2n

�
1� z

n

�� ����(1) = �(2) = 1� z

n
]�

�EV [u
�
V � b2n

�
1� z

n

�� ��Z(1) = z; Z(2) � Z(1) = 0] ]
= 0. (4)

By (3), we have for all n

EV [u
�
V � b2n

�
1� z

n

�� ����(1) = �(2) = 1� z

n
] = u (0) , (5)

and by direct computation (or directly using the memoryless property of exponential

random variables), we have

EV [u
�
V � b2n

�
1� z

n

�� ��Z(1) = z; Z(2) � Z(1) = 0]
=

R1
0
u
�
V � b2n

�
1� z

n

��
(
v) e

�(
v)z (
v) � (v) dvR1
0
(
v) e

�(
v)z (
v) � (v) dv

=

R1
0
u
�
V � b2n

�
1� z

n

�� (
v)2
�(2)

ze�(
v)z� (v) dvR1
0

(
v)
2

�(2)
ze�(
v)z� (v) dv

= EV [u
�
V � b2n

�
1� z

n

�� ��Z(2) = z ]: (6)

Combining (4) - (6), we have

lim
n!1

EV [u
�
V � b2n

�
1� z

n

�� ��Z(2) = z ] = u (0) .
Since the willingness to pay b2 (z) is the unique solution to

EV [u
�
V � b2 (z)

� ��Z(2) = z ] = u (0) ;
13



it follows that

lim
n!1

b2n

�
1� z

n

�
= b2 (z) .

Since the result holds for all z, this implies that

b2n

�
�(2)
�

d! b2
�
Z(2)

�
.

3.1 Discussion

In the risk neutral case, the willingness to pay is

bk (z) = EV [V
��Z(k) = z ];

so that we get immediately that: P kn ! EV [V
��Z(k) = z ]. Since E[EV [V ��Z(2) ] ��Z(1) = z ] =

EV [V
��Z(1) = z ]; we see that asymptotic revenue equivalence holds as a consequence

of the iterated law of expectations. Indeed, it is well known that in competitive auc-

tions as de�ned in Kremer (2002), risk-neutral bidders obtain a zero expected payo¤.

This generalizes in our paper to the risk-averse case: the winner is always indi¤erent

between getting the object and not. For a risk averse bidder, E[u (V � p)] depends
also on the higher moments of V and as a result, the wilingness to pay changes if

the posterior on V changes.

It may appear confusing that in the second-price auction where the price is deter-

mined by the second highest order statistic, the winner is indi¤erent between getting

the object and not irrespective of the realization of her own normalized signal. This

is because the value of the object conditional on the second highest order statistic

is the same as the value of the object conditional on both the �rst and the second

order statistics. This is an immediate consequence of the memoryless property of the

underlying exponential distributions.4

We may use the result on extreme order statistics and large numbers of bidders in

other settings as long as existence of a symmetric equilibrium with strictly monotonic

4Since the inference is based on two independent exponential random variables Z(1) and Z(2) �
Z(1); only their sum matters.
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bidding strategies is guaranteed. For example in an all-pay auction with indepen-

dent private values, we can follow the same steps to calculate the distribution of

equilibrium bids (except that in this simpler case, we need not carry out the step

of computing the distribution on V conditional on winning the auction). With risk

averse bidders, the expected revenue to the sellers falls below the risk-neutral case as

shown in Fibich & Gavious (2010). This follows from the fact that the bidder with

the highest signal has a non-degenerate probability of winning and losing and there-

fore the willingness to pay of a risk-averse bidder (and consequently her bid) is less

than the expected value of the implied lottery. Note that all-pay auctions in common

values environment are problematic, since a symmetric monotonic equilibrium easily

fails to exist.

4 Revenue comparison with CARA preferences

We next explore the implications of the asymptotic price distributions derived in

Proposition 3 for the expected revenue. In this section we restrict the utility function

to have constant absolute risk aversion (CARA). We �rst prove that the second-price

auction is superior to the �rst-price auction in terms of expected revenue. We then

compute explicitly the price distributions for a parametric example and illustrate

how the revenue di¤erence between the auction formats varies in the coe¢ cient of

risk aversion.

The CARA utility function is given by:

u (x) = �e
��x

�
;

where � is the coe¢ cient of absolute risk aversion. The utility of a bidder that

receives the object of value V at price p is5

EV (u (V � p)) = EV
�
�e

��(V�p)

�

�
= �

e�pEV
�
e��V

�
�

:

5Since initial wealth plays no role with CARA, we normalize that to zero.
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The willingness to pay (2) is then equalized to the price if:

�
e�b

k(z)EV
�
e��V

��Z(k) = z �
�

= u (0) = �1
�
:

Solving this for bk (z), we have:6

bk (z) = �
logEV

�
e��V

��Z(k) = z �
�

: (7)

We next state that in expectation, the second-price auction raises more revenue

than the �rst-price auction. The key to this result is the observation that the equi-

librium price in the second-price auction is more informative than the price in the

�rst-price auction. In particular, recall that information in the FPA corresponds to

one exponentially distributed random variable, while in the SPA it corresponds two

such independent random variables. By the law of iterated expectation, the addi-

tional information in the SPA relative to FPA induces no change in the expectation

of e��V , but since � log (�) is a convex function, Jensen�s inequality implies that an
additional signal induces on expectation an upward shift in the willingness to pay.

This is formalized in the proof below.

Proposition 4 Suppose that all the buyers have an identical CARA utility function.
Then, the expected revenue in the symmetric equilibrium of the second price auction

is at least as high as the expected revenue in the symmetric equilibrium of the �rst

price auction in the limit model where n!1.

Proof. For clarity, we use a subscript to denote the random variable with respect

to which an expectation is taken. From (7), the equilibrium price in a �rst-price

auction for a normalized �rst order statistic z(1) is given by:

P
�
z(1)
�
= �

log
�
EV [e��V

��Z(1) = z(1) ]�
�

:

6Note that in the limit � # 0, we get the risk neutral case:

bk (z) = EV
�
V
���Z(k) = z� .
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Let us now write the expected price for the second-price auction conditional on z(1)

(using (7) with k = 2):

EZ(2) [P
�
Z(2)

� ��Z(1) = z(1) ] = EZ(2) [� log �EV [e��V ��Z(2) = z(2) ]��

��Z(1) = z(1) ]:
Noting that � log (�) is a convex function, we have by Jensen�s inequality:

EZ(2) [�
log
�
EV [e��V

��Z(2) = z(2) ]�
�

��Z(1) = z(1) ] � �1
�
log
�
EZ(2) [EV [e

��V ��Z(2) = z(2) ] ��Z(1) = z(1) ]�
By the law of iterated expectation,

EZ(2) [EV [e
��V ��Z(2) = z(2) ] ��Z(1) = z(1) ] = EV [e��V ��Z(1) = z(1) ]:

Combining all of the equations above, we have:

EZ(2) [P
�
Z(2)

� ��Z(1) = z(1) ] � �1
�
logEV [e��V

��Z(1) = z(1) ] = P �z(1)� :
In words, conditional on a realization of Z(1), the expected price in SPA is higher

than in FPA. Since this holds across all possible realizations of Z(1), it follows that

the ex-ante expected revenue in SPA exceeds the expected revenue in FPA.

4.1 Example

To illustrate that the revenue di¤erence between the auction formats is actually

signi�cant, we consider a parametric example speci�ed as follows. First, we assume

that the conditional signal density is given by

g (� jv ) = v�v�1; (8)

which implies that 
v = v: Second, we let the prior � (v) be a Gamma distribution

with parameters (�; �). The choice of Gamma prior is convenient, because it is a

conjugate prior for the inference in our model.

In the Appendix we derive the following explicit formula for the equilibrium bid

functions in the two auction formats:

bk (z) =
(�+ k)

�
log

�
1 +

�

� + z

�
, k = 1; 2. (9)
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As we show in the Appendix, (9) implies an intuitive comparative statics result:

the bid function in both auction formats (and hence revenue to the auctioneer) is

decreasing in the parameter of risk aversion �. We also derive in the appendix

explicit formulas for the expected revenues E
�
bk
�
Z(k)

��
, k = 1; 2, and show that

E
�
b2
�
Z(2)

��
� E

�
b1
�
Z(1)

��
con�rming Proposition 4.

To illustrate the signi�cance of the revenue di¤erence between the auction for-

mats, we depict in Figure 1 the expected revenues E
�
bk
�
Z(k)

��
as functions of the

coe¢ cient of risk aversion �. The second price auction raises substantially more rev-

enue. It can also be seen that this di¤erence is increasing in �. It should be noted,

however, that as � is further increased towards in�nity, the expected revenues in

both cases converge to 0 so that the di¤erence eventually disappears (this happens

well outside the range of this �gure).

< Figure 1 to be inserted here >

5 Revenue ranking with other utility functions

One might wonder whether Proposition 4 extends to an arbitrary risk averse utility

function. Indeed, we have shown that in the second-price auction the equilibrium

price re�ects an additional informative signal in comparison to the �rst-price auction

price. One might intuitively expect risk-averse bidders to like this reduction of risk,

and therefore to pay more on average for the object. However, as already shown

in a related context by Milgrom & Weber (1982), the average willingness to pay

for an object increases upon receiving an arbitrary additional signal if and only if

utility is CARA. Therefore, if Proposition 4 were to be generalized beyond CARA

preferences, the argument would have to be based on the speci�c informational setup

in our model.

We have not been able to provide general revenue ranking results outside of CARA

class. Instead, we will demonstrate below numerically that the revenue ranking that

we have established for CARA seems to hold well within constant relative risk aver-

sion (CRRA) utility functions, given gamma prior on V . However, we then show with

two counterexamples that the revenue ranking can be reversed either by changing
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the prior distribution for V , or by moving outside of the CRRA speci�cation.

5.1 Numerical analysis of CRRA and gamma prior

With constant relative risk aversion (CRRA), the utility of a buyer who buys the

object of value V at price p is

u (V � p) = (w0 + V � p)1�


1� 
 ; (10)

whereas the utility of not getting the object is

u (0) =
(w0)

1�


1� 
 ,

where 
 is the coe¢ cient of relative risk aversion. Note that unlike in the case of

CARA the initial wealth matters, and therefore we must also parameterize the utility

function with initial wealth level w0.

Note that the domain of u (�) is (�w0;1), which means that bids higher than
w0 are infeasible. Therefore, we need an additional joint assumption on the model

parameters to guarantee existence of willingness to pay function, i.e. existence of a

solution to (2) for all z > 0. It is easy to show that this is guaranteed whenever w0
is high enough, and/or � (v) is pessimistic enough.7

The full generalization of Proposition 4 to CRRA class would require that the

second-price auction dominates �rst-price auction for all model speci�cations includ-

ing any choice of prior � (v). Section 5.2 below shows that such a generalization with

an arbitrary prior � (v) does not hold.

With � (v) restricted to gamma distribution (as in Section 4.1), the unambiguous

revenue ranking result seems at least initially plausible. However, even though we

7In essence, we need EV [u (V � b)
��Z(k) = z ] < u (0) for the highest possible bid b = w0. Re-

quiring this for realization z = 0 in the second price auction (the most optimistic posterior possible

in our model), gives the exact condition for the existence of willingness to pay function:

EV [
(V )

1�


1� 


���Z(2) = 0] < u (0) = (w0)
1�


1� 
 .
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have not been able to produce numerically a single counterexample, we have not been

able to prove such a result analytically either. For an illustration, Figure 2 shows

the expected revenues in the two auction formats as functions of the coe¢ cient of

relative risk aversion 
. The prior distribution is the same as in the illustration of

CARA case in Figure 1. The additional parameter needed for the CRRA case is the

initial wealth, for which we have used here w0 = 3.8 The �gure is strikingly similar

to Figure 1: the expected revenue is higher with the second-price auction, and the

di¤erence increases in the degree of risk aversion.

< Figure 2 to be inserted here >

5.2 Counterexample: CRRA with discrete prior

We show here that a di¤erent prior distribution for V may reverse the revenue ranking

within CRRA class. We assume that V can take only two values. Without further

loss of generality, assume that V 2 f0; 1g. We let �0 2 (0; 1) denote the prior

probability that V = 1, and let � denote some unspeci�ed posterior probability. We

allow an arbitrary prior only ruling out the trivial cases where there is no uncertainty,

i.e. where �0 = 0 or �0 = 1.

Modifying slightly De�nition 1, we denote by b (�) the willingness to pay for the

object given an arbitrary posterior belief �. Given CRRA with relative risk aversion

coe¢ cient 
 and initial wealth w0, b (�) is implicitly de�ned for each � by

� � (w0 + 1� b (�))
1�


1� 
 + (1� �) � (w0 � b (�))
1�


1� 
 =
(w0)

1�


1� 
 :

The notable feature is that with some parameter values the resulting bid function

is concave, as can be easily checked numerically. Figure 3 shows this function for

parameter values 
 = 1:5, w0 = 0:1 (in this case b (�) is strictly concave throughout

the unit interval). The concavity of b (�) leads directly to the superiority of �rst-

price auction in terms of expected revenue. To see intuitively why this is the case,

note that b (�) gives the selling price given the posterior � inferred in equilibrium.

8The �gure remains qualitatively unchanged with other feasible values of w0. For w0 low enough,

the bid function bk (z) fails to exist.
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When b (�) is everywhere concave, any additional information on the value of the

object hurts the seller on expectation. As we have seen, second-price auction delivers

more information than the �rst-price auction, therefore it follows that in this case

the �rst-price auction results in higher extected revenue.9

< Figure 3 to be inserted here >

The discrete probability distribution that puts a positive probability for the very

lowest possible value realization is crucial for the concavity of the willingness to pay

function. Note that b (�) ! w0 as � ! 1, but b (1) = 1 > w0 so that there is a

discontinuity in b (�) at � = 1.

5.3 Counterexample: kinked utility function

As the counterexample above relied on the discrete prior, it is useful see that we

can also reverse the revenue ranking by moving beyond CRRA class in terms of

preferences. In this example we allow an arbitrary prior density � (v) with support

[0;1).
We will construct a piecewise linear (concave) utility function. As a preliminary

step, assume that bidders are risk-neutral so that u (x) = x. In that case, the

equilibrium prices in the �rst and second price auctions are given by random variables

P 1 and P 2:

P 1 = E
�
V
��Z(1) � and

P 2 = E
�
V
��Z(2) � ;

9Formally, let �1 denote the posterior conditional on the realization of the normalized �rst order

statistic Z(1). Hence, the realized price in the �rst-price auction is given by b (�1) according to

Proposition 3. Let �2 denote the posterior conditional on the realization of Z(2) so that the realized

price in the second-price auction is given by b (�2). By the law of iterated expectation (noting

that �k = E
�
V
��Z(k) � ), we have EZ(2) (�2 j�1 ) = �1. Since b (�) is strictly concave, we have by

Jensen�s inequality EZ(2) (b (�2) j�1 ) < b (�1). Since this holds for any realization of Z(1), the ex-
ante expected value of b (�2) must be lower than that of b (�1), in other words, ex-ante selling price

is lower in the second-price auction than in the �rst-price auction.
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respectively, where Z(1) � Exp (
v) and Z(2) � Gamma (2; 
v). Let us denote by P
1

and P
2
the highest possible price realization in these auctions:

P
1
: = E

�
V
��Z(1) = 0� ;

P
2
: = E

�
V
��Z(2) = 0� .

Hence, the support of V �P k is given by
h
�P k;1

�
, k = 1; 2. Note that Z(2) = 0 is a

stronger positive signal on V than Z(1) = 0, and therefore we have P
2
> P

1
. Hence,

the support of V � P k is wider in the second-price auction than in the �rst-price
auction. Nevertheless, as bidders are risk neutral, the expected price must be the

same in both auctions.

Now, modify the utility function so that there is a kink at some ev 2 ��P 2;�P 1i:
u (x) =

(
x for x � evev � 2 (ev � x) for x < ev.

This modi�cation increases the bidders�marginal utility at the low end of the support

of V � P 2, and therefore to avoid negative expected utility, the equilibrium bid is

lower than in the risk-neutral case for some signal realizations (in particular, this is

the case for very high signal realizations). On the other hand, the utility function

is still linear in the entire support of V � P 1, and therefore this modi�cation has no
e¤ect on the bidding behavior in the �rst-price auction. It follows that the expected

revenue is higher in the �rst-price auction than in the second-price auction.

Note that once we have a piecewise linear utility function with �rst-price auction

strictly dominating second-price auction, we could modify this to get a smooth utility

function in the decreasing absolute risk aversion (DARA) class without a¤ecting the

revenue ranking. To do this, one would keep the part of the utility function above

the kink unchanged, and replace the part below the kink with a function that has

decreasing absolute risk aversion and which smooth-pastes to the linear part at the

kink. This simple observation su¢ cies to note that there is no hope in generalizing

our revenue ranking to DARA class.
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6 Conclusions

In this paper, we have characterized the equilibrium price distributions for large com-

mon value auctions with �rst-price and second-price formats. The key insight is that

the information content of the equilibrium price can be expressed with exponentially

distributed random variables. This allows easy computation for price distributions

and expected revenues with any utility speci�cation for the bidders.

The main di¤erence between the two auction formats is that equilibrium price is

strictly more informative in the second-price auction than in the �rst-price auction.

This is the key to revenue di¤erences across the auction formats with risk averse

bidders. With CARA utility, the e¤ect of more information is unambiguous: the

expected revenue is strictly higher in the second-price auction. Generalizing this

result beyond CARA turns out to be surprisingly tricky. On one hand, our numerical

investigations indicate that it is quite hard to �nd cases where �rst-price auction

generates more revenue than second-price auction. At the same time, by carefully

constructed examples we show this to be possible. Our view is that second-price

auction is likely to dominate �rst-price auction in typical cases, but it is not easy to

�nd interesting su¢ cient conditions outside of the CARA class for such domination.

While we have restricted our analysis to auctions for a single object, it is very

easy to generalize the results concerning the second-price auction to the sale of k

identical objects by k + 1th price auction. Existence of a symmetric monotonic

equilibrium is established in Theorem 3.1 of Milgrom (1981). We can therefore write

the price realization as P k+1n = bk+1n

�
�(k+1)

�
. A straight-forward extension of the

proof for Proposition 3 will then guarantee that the equilibrium price converges in

distribution to bk+1
�
Z(k+1)

�
, where bk+1 (�) is the willingness to pay according to

De�nition 1 and Z(k+1) � Gamma (k + 1; 
v). Note that if we then let k grow large,
we get full information aggregation as Z(k+1) becomes an arbitrarily precise signal

about true 
v as k increases. This is in line with the information aggregation result

in the risk neutral case in Pesendorfer & Swinkels (1997).
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Appendix

In this Appendix, we derive the bid functions given in (9) and the formulas for the

expected revenues plotted in Figure 1.

First, we compute E
�
e��V

�
, when V � Gamma(�; �):

E
�
e��V

�
=

Z 1

0

e��v
��

� (�)
v��1e��vdv =

��

(� + �)�

Z 1

0

(� + �)�

� (�)
v��1e�(�+�)vdv

=
��

(� + �)�
=

�
1 +

�

�

���
: (11)

Next, consider the Bayesian updating in the example. Given an observation z

from Gamma(k; v), the posterior on v is also a Gamma distribution with parameters

updated from (�; �) to (�0; �0) as follows:

�0 = �+ k, �0 = � + z. (12)

Combining the expectation computed in (11) with the updating formulas (12)

yields the formula (9) for the equilibrium bid function in kth price auction:

bk (z) = �
logE

�
e��V

��Z(k) = z �
�

= �
log
�
1 + �

�+z

��(�+k)
�

=
(�+ k)

�
log

�
1 +

�

� + z

�
, (13)

for k = 1; 2. From this, we can directly derive the comparative statics result that the

bid function (and hence revenue to the auctioneer) is decreasing in the parameter of

risk aversion �: To see this, observe that for a �xed z, we have

dbk (z)

d�
= �(�+ k)

�2
log

�
1 +

�

� + z

�
+
(�+ k)

�

1

� + z + �

=
(�+ k)

�

0@ 1

� + z + �
�
log
�
1 + �

�+z

�
�

1A < 0;
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where the last inequality follows from the observation:

log

�
1 +

�

� + z

�
>

�
�+z

1 + �
�+z

=
�

� + z + �
:

Let us next derive the actual price distributions and formulas for expected rev-

enues. The equilibrium price in the �rst price auction is a random variable b1
�
Z(1)

�
,

where Z(1) � Exp (v), and in the second price auction it is b2
�
Z(2)

�
, where Z(2) �Gamma(2; v).

Note, however, that these probability distributions are conditional on the true value

of v, which is unknown to the seller. Hence, as perceived by the seller with prior

v �Gamma(�; �), Z(1) and Z(2) are compound random variables, whose probability

density functions we can easily derive:

d

dz
Pr
�
Z(1) � z

�
=

d

dz

Z 1

0

�
1� e�vz

�
� ��

� (�)
v��1e��vdv

=

Z 1

0

ve�vz � ��

� (�)
v��1e��vdv

=
�

�

�
�

� + z

��+1
,

d

dz
Pr
�
Z(2) � z

�
=

d

dz

Z 1

0

�
1� e�vz � vz � e�vz

�
� ��

� (�)
v��1e��vdv

=

Z 1

0

v2ze�vz � ��

� (�)
v��1e��vdv

=
� (�+ 1)

�2

�
�

� + z

��+2
� z.

The price distribution is hence obtained by combining functional form (13) with

these densities. Hence, the expected revenues in the two auction formats are:

E
�
b1
�
Z(1)

��
=

Z 1

0

(�+ 1)

�
log

�
1 +

�

� + z

�
�

�

�
�

� + z

��+1
� dz; (14)

E
�
b2
�
Z(2)

��
=

Z 1

0

(�+ 2)

�
log

�
1 +

�

� + z

�
� (�+ 1)

�2

�
�

� + z

��+2
� z � dz:(15)
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To con�rm that E
�
b2
�
Z(2)

��
� E

�
b1
�
Z(1)

��
, we can write the di¤erence in the

revenues between the two auctions as follows:

E
�
b1
�
Z(1)

��
� E

�
b2
�
Z(2)

��
= (16)

� (�+ 1)

�2

Z 1

0

� + z

�
log

�
1 +

�

� + z

��
�

� + z

��+2�
1� (�+ 2) z

� + z

�
� dz:

Letting

� (�; z) :=
� + z

�
log

�
1 +

�

� + z

�
;

and

� (z) :=

�
�

� + z

��+2�
1� (�+ 2) z

� + z

�
;

we can write the revenue di¤erence as:

� (�+ 1)

�2

Z 1

0

� (�; z) � (z) dz:

In the risk-neutral limit as � ! 0; the function � (�; z)! 1 uniformly. Simple algebra

shows that Z 1

0

� (z) dz = 0;

so that in the case of risk-neutral bidders, there is no di¤erence in revenues across the

auction formats, which is in line with the earlier results obtained under risk-neutral

bidding.

For � > 0, � (�; z) is increasing in z for all z � 0: By simple computation for the
function � (�), we have

(�+ 2) �� 0 (z) = (z (�+ 1)� 2�)
�

�

� + z

��+1
:

Hence � (�) has at most one local maximum or minimum. Combiming with this the

information that

� (0) > 0; � (z) < 0 for z >
�

�+ 1
;

and

lim
z!1

� (z) = 0;
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we know that � (z) is quai-monotone in the sense that for all z0 > z;

� (z) < 0 =) � (z0) < 0:

It is well known (see e.g. Lemma 1 in Persico (2000)) that if i) � (z) is quasi-monotone

in the above sense and ii) Z 1

0

� (z) dz = 0;

Then for all increasing � (�; z) ;Z 1

0

� (�; z) � (z) dz � 0:

This implies the revenue ranking result:

E
�
b1
�
Z(1)

��
� E

�
b2
�
Z(2)

��
=

� (�+ 1)

�2

Z 1

0

� (�; z) � (z) dz � 0:
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