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Abstract

I study the optimal regulation of a �rm producing two goods. The �rm has private in-

formation about its cost of producing either of the goods. I explore the ways in which the

optimal allocation di¤ers from its one dimensional counterpart. With binding constraints

in both dimensions, the allocation involves distortions for the most e¢ cient producers and

features overproduction for some less e¢ cient types.

JEL: D82, L21, Asymmetric Information, Multi-dimensional Screening, Regulation.

1 Introduction

When duplication of �xed costs is wasteful, a service is e¢ ciently provided by a natural monopoly.

To keep the service provider from abusing its monopoly power, the pricing of the �rm is regulated.

If the regulator had access to the �rm�s information, regulation would be a trivial matter. As is

well known, the �rm should follow a marginal cost pricing rule and should be subsidized for the

losses it makes on a lump-sum basis. However, the problem is precisely that the �rm has better

information than the regulator has about payo¤ relevant circumstances. Baron and Myerson [1982]

�This paper is one spin-o¤ of an earlier version, which was joint with Charles Blarckorby and entitled "Regulating

a Monopolist with unknown costs and unknown quality capacity"; the other spin-o¤ is now entitled "Quality
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at HEC Lausanne, LBS, LSE, the University of Bonn, University of Frankfurt, ESSET Gerzensee, and the conference

on "Multidimensional Mechanism Design" at HCM Bonn. Correspondence can be sent to Dezso Szalay, Chair of

Economic Theory I, University of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany, or to szalay@uni-bonn.de
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�rst analyzed this problem when the �rm�s costs are unknown to the regulator but known to the

�rm. Marginal cost pricing is no longer optimal as this rule gives �rms with relatively low marginal

costs incentives to exaggerate their costs in order to get larger subsidies. To make such exaggeration

unattractive, prices are distorted upwards for all but the most e¢ cient �rms.

In many industries regulation is more complex than deciding how much to produce at what

price. In my extension of the Baron and Myerson [1982] model, a monopolist produces two goods

instead of one and has private information about his costs of producing each of the goods. E.g.

a railway company typically o¤ers both cargo and passenger services; telephone networks can be

used for communication and data transfer. How does this simple extension of the standard model

a¤ect its predictions? I develop a model that is both stylized and rich to answer this question. It

is stylized in that it allows me to answer the question in the �rst place. It is rich because it allows

both for the case where the optimal allocation coincides with the one which is well known from

the analysis of onedimensional models and for cases that are markedly di¤erent from the standard

case.

The technology of the regulated �rm is described by the cost of producing two goods. Good

one is divisible and can be produced in any amount; the �rm has private information about its

marginal cost of producing this good, a realization of a random variable supported on an interval.

In addition the �rm has also private information about its cost of producing good two, which

can be either high or low; good two can be produced in two di¤erent versions (or quantities).

The interesting case to analyze is when it is optimal to separate �rms according to their costs of

producing good two, so in equilibrium �rms with high costs of producing good two produce the

less expensive variant, and �rms with low costs of producing good two produce the lean version

of the good. In that case the production schedules for good one production can be conditioned

on the amount of good two delivered, so there is a potential for separating �rms further in the

good one production dimension. These schedules di¤er from their counterparts from the case

where private information is one dimensional exactly when the incentive constraints are binding in

both dimensions. Moreover, the way these schedules di¤er from the known counterparts depends

crucially on why incentive constraints to mimick another �rm with a di¤erent cost of producing

the discrete good are binding. First, they can be binding because increasing the amount of good

two production increases the marginal cost of producing good one. Second, they can bind because

observing high production of good two allows the regulator to update his beliefs about good one

costs of production.
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Consider �rst the case where incentive constraints are binding because there are real di¤er-

ences in marginal costs. In order to keep a producer with low costs of producing good two from

mimicking a producer with high costs of producing good two, depending on properties of the type

distribution, it becomes optimal to distort the production schedule for good one upwards. Instead

of no distortion for the most e¢ cient producer and too little production for less e¢ cient producers,

the good-one-production schedule for a low-cost-good-two producer features no distortion for the

most ine¢ cient producer and excessive production for more e¢ cient producers (among those with

low costs of producing good two). In particular, there is a distortion for the most e¢ cient producer

within that class. The good-one-production schedule of a high-cost-good-two producer has more

standard, but not quite completely standard features; there is too little production for all such

�rms, including the most e¢ cient one among them.

If incentive constraints are binding due to inference about costs of producing good one, then

it is never optimal to actually make use of this information; the optimal allocation for good one

production is the same, irrespective of the �rm�s cost of producing good two. Although separation

would be feasible, the rents required to achieve this separation would be too high relative to the

bene�t of separation. The common quantity schedule is optimal against the marginal distribution

of marginal costs of producing good one and has the standard features of no distortion at the top,

too little production below the top, and no rent at the bottom.

Finally, if both reasons for binding constraints interact, then the optimal allocation is a hybrid

of the two cases. If the schedules involve bunching, then it is for producers with low costs of

producing good one. If that is the case, then there is no distortion for the most e¢ cient producers

too little production slightly below that. However, for producers with higher costs, good-one-

production of the low-cost-good-two producer is again distorted upwards so as to inhibit this �rm

from mimicking its high-cost-good-two producer counterpart.

These results con�rm �ndings by Lewis and Sappington [1988] and Armstrong [1999], although

I obtain mine using very di¤erent veri�ability assumptions and techniques. Lewis and Sappington

[1988] and Armstrong [1999] assume that the �rm knows the intercept of a linear demand function

and the value of its marginal cost parameter, while the regulator does not have any of this infor-

mation. Thus, there are two parameters of private information, but the regulator has only one

instrument, the marginal price, to screen �rms. This problem is amenable to techniques developed

in La¤ont, Maskin and Rochet [1987] and McAfee and MacMillan [1988]. Armstrong [1999] proves
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the optimality of exclusion in the Lewis and Sappington model1 . Compared to the approach of

Lewis and Sappington and Armstrong, my model is more tractable and allows for closed form

solutions in a wide range of cases; in particular, I prove the optimality of prices below marginal

costs, while the earlier work only suggests that this may happen. Moreover, due to the added

tractability my model allows me to pin down precisely how the pattern of distortions depends on

the features of the model as described above.

Rochet and Choné [1998], Armstrong [1996], and Wilson [1993] o¤er the most general treatment

of and results on multidimensional incentive model. Rochet and Stole [2003] explain the obstacles

researchers face when solving multidimensional models. In part this is due to the techniques

required to tackle the problems. To an another part this is due to the ignorance of what one is

actually looking for: it usually becomes much easier to prove the optimality of an allocation once

it is known how it looks like. Armstrong and Rochet [1999] study a two-by-two model in detail

and show under what conditions constraints are binding in which direction. This paper continues

along these lines and studies the pattern of binding constraints and the resulting allocations in

detail. Relatively simple solution techniques are shown to apply, which hopefully prove useful in

general for di¤erent problems.

Some of the techniques I am using here were introduced in Beaudry, Blackorby, and Szalay

[2009] in the context of a taxation model where workers possibilities to mimick others were limited

in one dimension. In contrast, this paper makes no restriction on the feasible deviations. However,

I obtain tractability by assuming a particular cost function. So, in some sense this model is in

between the Rochet and Choné [1998] model and models with restrictions on feasible deviations.

The paper is organized as follows. In Section two I lay out the model and explain the regu-

lator�s allocation choice and its solution in the �rst-best. In Section three, I describe the set of

implementable allocations and derive the regulator�s control problem. In Section four, I lay out

a benchmark case where constraints are binding in only one dimension. In Section �ve, I treat

the multidimensional problem and discuss how binding constraints relate to bunching. Section

six contains the �rst set of closed form solutions for the case of a fully separating solution (with

binding constraints in both dimensions). Section seven contains closed form solutions for the case

where bunching occurs everywhere. Section eight discusses hybrid cases. Section nine concludes.

Long proofs have been relegated to the appendix.

1Technically, exclusion is optimal because the density of the sum of two random variables goes to zero at the

bounds of its support. Armstrong [1996] shows that exclusion is robust in these kind of settings under more general

assumptions.
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2 The model and the main assumptions

There are two goods. Consumers�valuations for these two goods are given by the function V (x; q) ;

where x is the quantity of the �rst good and q the quantity of the second good. Consumer�s

valuation for good one is independent of the valuation for good two, so V (x; q) = V 1 (x) + V 2 (q).

Letting P 1 (x) denote the inverse demand function for good one and P 2 (q) denote the inverse

demand function for good two, I have

V 1 (x) �
xZ
0

P 1 (z) dz

and

V 2 (x) �
qZ
0

P 1 (z) dz:

I assume that the inverse demand functions are di¤erentiable and decreasing in x; so the valuations

are twice di¤erentiable and concave; obviously, the valuations are increasing in their argument:

Good one is perfectly divisible, so x can be any non-negative amount. Good two can be produced

in two di¤erent quantites q1, and q2; - or more generally, in two di¤erent variants - where V 2 (q2) >

V 2 (q1) > V
2 (0) = 0.

The goods are produced by a monopoly �rm subject to price regulation. The �rm�s cost of

producing the goods in quantities x and q is

C (x; q; �; �) = K + x� + q� + 

�
� � �

�
[q � q1] + �xq;

where 
 > 0; � � 0; and K > 0 are constants known to both regulator and �rm, and x and q

are veri�able so that contracts can be written on these variables; � and � are parameters that are

known to the �rm but not to the regulator. The regulator knows only the joint distribution of

these variables. � and � are distributed on a product set ��H with probability density function

f (�; �) > 0 for all �; �: The set � is taken as the interval
�
�; �
�
, where � > 0: The set H is taken as�

�; �
	
where � > � > 0: The marginal probability that � = � is equal to �: Let G (�) denote the cdf

of �: Given the full support assumption, for each � that has dG (�) > 0; the conditional distribution

of � given � has full support. The density and cdf of this distribution are denoted f (� j� ) and

F (� j� ) ; respectively. Let E denote the expectation operator and let f (�) � EH [f (� j� )] and F (�)

denote the density and the cdf of the marginal distribution, respectively.

The cost and valuation functions are simple and rich enough at the same time. They are simple,

because the �rms knowledge about its cost of producing q matters only for equilibrium costs of
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production when a �rm with parameter � is asked to produce q = q2 but not at all if that �rm is

asked to produce q = q1: Let

� � 
 [q2 � q1]
�
� � �

�
: (1)

� is the extra cost of production if a �rm with parameter � is asked to produce q2 instead of q1: I

assume throughout that paper that � is su¢ ciently large, so that a �rm with parameter � produces

q1 at the optimum. On the other hand, the problem is rich enough in the sense that the optimal

allocation in the multi-product model is substantially di¤erent from the optimal allocation in the

one-product case. Notice that the cost function satis�es the standard Spence-Mirrlees conditions

in x,� and q; �, respectively.

The �rm is subject to price regulation. However, it is equivalent and notationally much more

convenient to analyze the model directly in terms of quantity regulation. If the �rm produces

quantities x and q then it receives a subsidy t and its pro�t is

t+ P 1 (x)x+ P 2 (q) q � C (x; q; �; �) :

De�ne the sum of consumer and producer surplus as

S (x; q; �; �) � V1 (x) + V2 (q)� C (x; q; �; �) :

Notice that the surplus function is concave in x and q jointly; moreover, the function satis�es

Sxq (x; q; �; �) < 0; so x and q are net substitutes in the surplus function2 .

2.1 The regulator�s problem

I think of the regulator�s problem in term�s of a direct revelation mechanism, which is a triple

of functions fq (�; �) ; x (�; �) ; t (�; �)g for all (�; �) 2 � � H that satisfy incentive compatibility

constraints. The regulator maximizes a weighted sum of net consumer surplus and producer

surplus. If a �rm announces parameters �̂ and �̂; then its pro�ts are given by

�
�
�̂; �; �̂; �

�
� t
�
�̂; �̂
�
+P1

�
x
�
�̂; �̂
��
x
�
�̂; �̂
�
+P2

�
q
�
�̂; �̂
��
q
�
�̂; �̂
�
�C

�
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �; �

�
:

Under a truthful mechanism, the weighted joint surplus for a given pair (�; �) is equal to

W (�; �) � V1 (x (�; �))+V2 (q (�; �))�P1 (x (�; �))x (�; �)+P2 (q (�; �)) q (�; �)�t (�; �)+��(�; �; �; �)

where � 2 (0; 1) : Since � is kept constant throughout the paper, I suppress the dependence of the

welfare function on � in what follows: I let � and H denote the random variables with typical
2See, e.g., La¤ont and Tirole [1993].
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realizations � and �; respectively, and let E�H denote the expectation operator taken over the

random variables � and H: The regulator solves problem following problem, which I denote as

problem P:

max
x(�;�);q(�;�);t(�;�)

E�HW (�; �) (2)

s.t. for all �; � and all �̂; �̂

�(�; �; �; �) � �
�
�̂; �; �̂; �

�
; (3)

and for all �; �

�(�; �; �; �) � 0; (4)

(3) is the incentive compatibility condition, requiring that a �rm of type �; � must have no incentive

to mimic any other type of �rm;(4) requires that each �rm in equilibrium obtain a non-negative

pro�t.

2.2 The �rst-best

Since � < 1; the regulator allocates all surplus to the consumer in the �rst-best allocation; the

participation constraint is binding for each type, �(�; �; �; �) = 0; so

t (�; �) = C (x (�; �) ; q (�; �) ; �; �)� P1 (x (�; �))x (�; �)� P2 (q (�; �)) q (�; �) :

Substituting for t (�; �) into the regulator�s objective function, I obtain

max
x(�;�);q(�;�)

E�H (V1 (x (�; �)) + V2 (q (�; �))� C (x (�; �) ; q (�; �) ; �; �))

I assume throughout the paper that producing good two is valuable; moreover, if V 1x (0) is su¢ -

ciently large, the solution for x is interior as well. Given these assumptions, the �rst-best optimal

policy for good on, xfb (�; �) ; satis�es equality of marginal bene�ts and costs, so

V 1x
�
xfb (�; �)

�
� Cx

�
xfb (�; �) ; qfb (�; �) ; �; �

�
= 0:

Consider now the �rst-best optimal policy for q: Assuming V 2 (q2) is su¢ ciently large and � and

� su¢ ciently small, it is optimal to have �rms with � = � good two in a large quantity, so

qfb
�
�; �
�
= q2. Assuming that V 2 (q1), 
 and � are su¢ ciently large, it is optimal to have �rms

with � = � produce quantity q = q1; so qfb (�; �) = q1: It is straightforward to characterize the

optimal policy for q also in di¤erent cases; however, the present one is the most interesting one for

the analysis that follows.

7



3 Statement of the problem

3.1 Implementable allocations

To solve the regulator�s problem I begin by bringing the incentive and participation constraints, (3)

and (4) into a more tractable form. Obviously, the set of implementable allocations for good one

production depend on the implemented allocation for good two. However, by design the �rst-best

allocation rule for good two continues to be optimal even when the �rm has private information.

The reason is the special way in which the parameter � enters the problem - of course, this is

precisely why I assumed this particular form of cost function in the �rst place. To demonstrate

this fact, I characterize optimal policies for good one assuming q is set according to the �rst-best

rule; later on I verify that the conjectured form of policy for good q is indeed optimal.

Lemma 1 If the regulator implements the �rst-best allocation rule for good two, then the incentive

constraint (3) is equivalent to the pair of one-dimensional constraints

�(�; �; �; �) � �
�
�̂; �; �; �

�
(5)

and

�(�; �; �; �) � �(�; �; �̂; �) : (6)

Proof of Lemma 1. Clearly, (5) and (6) are necessary for (3) : So, I need to show that they

are su¢ cient as well.

Suppose that the regulator follows a good two allocation rule q (�; �) = q1 and q
�
�; �
�
= q2:

Then, the pro�t of a type (�; �) �rm mimicking a type
�
�̂; �
�
�rm is equal to

�
�
�̂; �; �; �

�
= t

�
�̂; �
�
+ P1

�
x
�
�̂; �
��
x
�
�̂; �
�
+ P2 (q2) q2 � C

�
x
�
�̂; �
�
; q2; �; �

�
= t

�
�̂; �
�
+ P1

�
x
�
�̂; �
��
x
�
�̂; �
�
+ P2 (q2) q2 � C

�
x
�
�̂; �
�
; q2; �; �

�
��;

so

�
�
�̂; �; �; �

�
= �

�
�̂; �; �; �

�
�� (7)

Likewise, the pro�t of a type
�
�; �
�
�rm mimicking a type

�
�̂; �
�
�rm is equal to

�
�
�̂; �; �; �

�
= t
�
�̂; �
�
+ P1

�
x
�
�̂; �
��
x
�
�̂; �
�
+ P2 (q1) q1 � C

�
x
�
�̂; �
�
; q1; �; �

�
;

so

�
�
�̂; �; �; �

�
= �

�
�̂; �; �; �

�
(8)
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By (5) ; it follows that

max
�̂
�
�
�̂; �; �; �

�
= �

�
�; �; �; �

�
��;

that is, the best feasible report in the � dimension is to report the truth, even conditional on having

misrepresented the � dimension. On the other hand,

�
�
�; �; �; �

�
�� = �

�
�; �; �; �

�
So, by (6) for type (�; �) ;

�(�; �; �; �) � �
�
�; �; �; �

�
the best feasible deviation is suboptimal for type (�; �) :

By the (5) for type
�
�; �
�
it follows that

max
�̂
�
�
�̂; �; �; �

�
= �(�; �; �; �)

so (6) for type
�
�; �
�
; that is

�
�
�; �; �; �

�
� �

�
�; �; �; �

�
;

even the most pro�table deviation available to type
�
�; �
�
is suboptimal.

The intuition for this result is very simple. A �rm�s incentive to report its cost parameter �

do not depend on what the �rm reported about its cost parameter �; and vice versa. To see this,

suppose a �rm with cost parameters (�; �) announces �̂ 6= �. Its pro�t di¤ers from the pro�t of

a �rm with cost parameters (�; �̂) by the amount
�
q (�; �)� q

�
�; �
��
�: However, as long as the

functions q (�; �) and q
�
�; �
�
are independent of �; the di¤erence in pro�ts is an additive constant.

Hence, the �rm�s optimal report in the � dimension is not a¤ected by its report in the � dimension.

Hence, the two-dimensional constraint breaks down into a pair of one dimensional constraints.

This is a crucial di¤erence to the multi-dimensional problem of Rochet and Choné (2003), where

the reduction of incentive compatibility conditions is not possible.

It is the speci�c form of the cost function that implies that the constraints fall apart; it is

essential that the optimal allocation rule for good two production is independent of �: A second

implication of this cost function is that knowledge of � does not give rise to informational rents.

The reason is that, at the optimal allocation, the costs of a �rm with parameter � and a �rm with

parameter � (both having the same cost parameter �) di¤er only by factors that are observable

(that is, x and q). However, observable cost di¤erences are just reimbursed by the regulator, given

that � < 1: This insight allows me to prove the following result. Let � (�; �) � max�̂;�̂ �
�
�̂; �; �̂; �

�
:
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Lemma 2 i) The incentive constraint (5) is satis�ed if and only if

t (�; �) = C (x (�; �) ; q (�; �) ; �; �)+�
�
�; �
�
+

�Z
�

x (y; �) dy�x (�; �)P1 (x (�; �) ; q (�; �))�P2 (q (�; �)) q (�; �)

(9)

and x (�; �) is non-increasing in � for all �;

ii) The incentive constraint (6) is satis�ed if and only if

� � �
�
�; �
�
� � (�; �) � 0 (10)

where � is de�ned in (1) ;

iii) The participation constraints (4) are met if �
�
�; �
�
� 0 for all �:

The proof of part i) in the Lemma is standard and therefore omitted. I compute the rent

of a �rm of type (�; �) by summing the rent of the most ine¢ cient cost type for a given quality

capacity, �
�
�; �
�
; and the marginal changes of the �rm�s rent with respect to changes in its cost

parameter �: Notice that (9) allows for the case where �
�
�; �
�
> 0; so some high cost types may

receive rents. Apart from allowing for rents for the most ine¢ cient types, I can essentially use the

standard procedure as in the one-dimensional case. Part ii) follows directly from Lemma 1. In the

proof of Lemma 1, I have shown that

�
�
�; �; �; �

�
= �

�
�; �; �; �

�
��

and

�
�
�; �; �; �

�
= �(�; �; �; �) :

In words, di¤erences in pro�ts when mimicking a �rm with a di¤erent cost of producing good two

are captured entirely by di¤erences in ��xed costs�. Condition (10) merely restates this �nding.

Finally, part iii) is obvious by the usual argument in one-dimensional models implying that the

single-crossing condition (in x and �) implies that the participation constraint can only bind at

one end.

4 The control problem

I can ease notation letting x (�) � x (�; �) and x (�) � x
�
�; �
�
; and likewise for the quantity

schedules of good two, q (�) and q (�) ; for the transfer schedules t (�) and t (�) ; and the rent

schedules � (�) and � (�) : I let � � �
�
�
�
and � � �

�
�
�
: De�ne the virtual surplus

B (x; q; �; �) � V1 (x) + V2 (q)� C (x; q; �; �)� (1� �)x
F (� j� )
f (� j� ) : (11)
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For future reference, I also de�ne the excess rent of a type
�
�; �
�
over a type (�; �) as

� (�; �; �) � � +
�Z
�

x (y) dy � � �
�Z
�

x (y) dy:

Using (9) to substitute out transfers from the regulator�s problem, and integrating by parts, I

obtain obtain the following representation of the regulator�s problem, which, for future reference,

I denote as problem P�

max
x(�);x(�);�;�

8><>: �
R �
�
B
�
x (�) ; q2; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
R �
�
B (x (�) ; q1; �; �) f (� j� ) d� � (1� �) (1� �)�

9>=>; (12)

s:t:

� +

�Z
�

x (y) dy � � �
�Z
�

x (y) dy � 0 (13)

� +

�Z
�

x (y) dy � � �
�Z
�

x (y) dy � �; and (14)

x (�) ; x (�) non-increasing in �: (15)

Problem P�has the following structure. If the monotonicity constraints on x (�) and x (�) are

nonbinding; the problem can be viewed as a control problem with two control variables, x (�) and

x (�) ; and two state variables, �
R �
�
x (y) dy and �

R �
�
x (y) dy: Moreover, the state variables enter

the problem through inequality constraints. This is a relatively complex problem, but solution

techniques are available in the literature (see, e.g., Kamien and Schwartz (1981) or Seyerstad and

Sydsaeter (1999)). If the monotonicity constraints are binding for some �; the problem involves

second derivatives. This case becomes extremely di¢ cult to analyze. Therefore my approach is to

impose assumptions that guarantee that the monotonicity constraints are slack at the solution to

problem P�.

5 A benchmark

Before I dive into the main analysis of this problem, it is useful to look into a benchmark case

where all the constraints are automatically satis�ed.

Suppose � is su¢ ciently large, so at the optimum a �rm with parameter � produces q1: Suppose

further that � = 0; so that goods one and two are neither net substitutes nor net complements.

11



Moreover, suppose that � conditional on � = � is smaller than � conditional on � = � in the

reversed hazard rate order:

Assumption Bi: f(�j� )
F (�j� ) �

f(�j� )
F(�j� ) for all �:

This implies that � conditional on � = � is smaller in the usual stochastic order � = � (that

is, First Order Stochastic Dominance) than � conditional on � = � (see Shaked and Shantikumar

(2007)): Finally, suppose that the conditional reversed hazard rates are monotonic in � :

Assumption Bii: For all � @
@�

F (�j� )
f(�j� ) � 0 for � 2

�
�; �
	
:

In this case the optimal allocation is very easy to characterize:

Proposition 1 Suppose � = 0; � is su¢ ciently large, and Assumptions Bi and Bii hold. Then,

the optimal allocation for good two is q� (�) = q1 and q� (�) = q2 for all �: The optimal allocation

for good one satis�es

V 1x (x
� (�)) = Cx

�
x� (�) ; q2; �; �

�
+ (1� �)

F
�
�
��� �

f
�
�
��� � (16)

and

V 1x (x
� (�)) = Cx (x

� (�) ; q1; �; �) + (1� �)
F (� j� )
f (� j� ) (17)

and thus x� (�) � x� (�) : The optimal transfer schedules satisfy (9) : There is no rent at the bottom,

that is, �� = �� = 0:

The proof is very simple and uses only well known arguments, so I give only a heuristic sketch.

If � is su¢ ciently large, it is obvious that q� (�) = q1: As long as good two is su¢ ciently valuable, it

is optimal to set q� (�) = q2: Suppose now that problem P�is solved neglecting all its constraints.

The resulting quantity schedules are precisely the ones given in the proposition. The point is

that these schedules satisfy all the constraints under the conditions given in the proposition. In

particular, the conditions imply that x� (�) � x� (�) for all �; so (13) is automatically satis�ed for

� = � = 0: Moreover, if feasible, then it is of course always optimal to extract all the rents from

high � types. If � is su¢ ciently large, then (14) is satis�ed as well. Finally, under the maintained

assumption of monotonic reverse hazard rates, the schedules x� (�) and x� (�) are monotonic.

The intuition is simple too. The schedules x� (�) and x� (�) are optimal resolutions of rents

versus e¢ ciency trade-o¤s. The higher is x (�) the higher are the rents the regulator has to leave

to types with costs smaller than �: On the other hand, the regulator wishes to set an e¢ cient

quantity so as to raise surplus. The reverse hazard rate determines the weight given to each of the

two motives. If the reversed hazard rate is smaller for � = �; then raising � increases the regulator�s

12



concern for e¢ ciency relative to rent extraction. Hence, truthfully revealing a low type � is in the

�rm�s interest. A high � �rm has no incentive to mimick a low � �rm because �; the cost of this

deviation is too high. Hence, only the incentive constraints in the � dimension are binding and the

problem can be solved as a family of one dimensional problems.

6 The multi-dimensional case

I now solve the more interesting case where incentive constraints in both dimensions are binding.

To make progress beyond an �anything goes�characterization, I maintain the assumption that the

reversed hazard rate can be ordered. In particular, I impose for the remainder of the article

Assumption M:
f(�j� )
F(�j� ) �

f(�j� )
F (�j� ) for all �:

As explained above, assumption I implies that a �rm has stochastically lower costs of producing

good one conditional on having low costs of producing good two. It is easy to see that the allocation

given in the last section can no longer be optimal as it now would violate condition (13) :

I continue to assume that � is su¢ ciently large, which implies that (14) is never binding at

the optimum. In that case it is also immediate that �� = 0; that is, the �rm with the highest

cost in both dimensions must have no rent at the optimum. The reason is that reducing � relaxes

constraint (13) and raises the regulator�s objective. Hence, the excess rent of a low � type over his

high � counterpart can be written as

� (�; �) � � +
�Z
�

x (y) dy �
�Z
�

x (y) dy: (18)

Consider a �reduced� version of the regulator�s problem, which for future reference is denoted

problem P�:

max
x(�);x(�);�

8><>: �
R �
�
B
�
x (�) ; �; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
R �
�
B (x (�) ; �; �; �) f (� j� ) d�

9>=>; (19)

s.t.

� (�; �) � 0: (20)

The problem is reduced in the sense that (15) is omitted from the problem; as I have argued above,

omitting (14) is without loss of generality as this constraint is never binding for � large.

In now solve problem P�. If the solution to this reduced problem satis�es all the constraints

of the full problem, then the solution to the full problem has been found. This is the case under

restrictions on the distribution of types.
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6.1 The pattern of binding constraints

I begin with a few general observations about the problem and its solution. First, I observe that

constraint (13) is binding for some � at the optimum. To see this, suppose (13) were non-binding

for all �: Then the solution to the problem would involve the quantity schedules x� (�) and x� (�)

de�ned by (16) and (17) in Proposition 1. But this requires that the regulator leaves at least a

rent ~� to all �rms with low costs of producing good two, where

~� �
�Z
�

x� (y) dy �
�Z
�

x� (y) dy > 0:

~� is strictly positive because, due to Assumption M, the schedules de�ned by the conditions (16)

and (17) in Proposition 1 satisfy x� (�) � x� (�) : However, setting � � ~� cannot be optimal.

Around � = ~�; the marginal cost of increasing � is equal to �� (1� �); a fraction of �rms � has

low costs of producing good two and rents left to �rms enter the regulators payo¤ function with a

weight of � (1� �) : On the other hand, the bene�t of increasing � around � = ~� is zero, as the

regulator is already unconstrained by condition (13) for � = ~�: Hence, at the optimum I must have

0 � �� < ~�:3

It is possible to locate where (20) is necessarily binding.

Lemma 3 Consider the �reduced� (19) subject to (20) : At the solution to this problem, constraint

(20) is binding at � = �:

The proof is a simple argument by contradiction. Let x� (�) and x� (�) denote the optimal

quantity schedules solving the reduced problem (19) subject to (20) : If constraint (20) were slack

at � = �; I could use the transversality conditions of the problem (and do so in the appendix)

to conclude that x� (�) and x� (�) satisfy conditions (16) and (17) de�ned in Proposition 1 for all

� � �0; where �0 is the smallest � where (20) is binding. By de�nition of the point �0; the excess

rent of type
�
�0; �

�
is zero, that is �

�
�0; �

�
= 0: However, from the discussion above we know that

x� (�) � x� (�) given assumption I, where the inequality is strict for � > 0:Hence, I have
�0Z
�

x� (y) dy �
�0Z
�

x� (y) dy < 0:

But this shows that

� (�; �) = �
�
�0; �

�
+

�0Z
�

x� (y) dy �
�0Z
�

x� (y) dy < 0;

3This heuristic argument is made more formally in the proof of Proposition 2 below.
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for any �0 > �: Hence, I must have �0 = �; that is, constraint (20) is binding at �: The complete

statement of the problem and the details of the argument can be found in the formal proof in the

appendix.

6.2 Binding Constraints and Bunching

Suppose there is an interval
�
�0; �00

�
such that constraint (20) binds over that interval, that is for

all � 2
�
�0; �00

�
� +

�Z
�

x (y) dy �
�Z
�

x (y) dy = 0:

Di¤erentiating this condition with respect to �; I have

x (�) = x (�) for all � 2
�
�0; �00

�
:

Thus, when the incentive constraint in the ��dimension is binding for � in some nonempty interval,

then the solution schedules x (�) and x (�) involve bunching.

Thus, unless constraint (20) is binding on a set of isolated points, the solution schedules x (�)

and x (�) must be identical (i.e., independent of �) for some realizations of costs �: Of course there

could be a second sort of bunching in the � dimension, that is at least one of the schedules x (�) or

x (�) could have �at parts. I rule this case out by imposing assumptions on the joint distribution

of � and �:There are two reasons to do this. First, bunching in one dimension is well understood

by now, so I concentrate on the novelties here. Second, the problem becomes quickly untractable

when the two sorts of bunching are present together and interact with each other.

It proves useful to organize the analysis along the predictions arising from it and the assumptions

needed to get them. I start with the simplest and perhaps most illuminating case where the solution

is fully separating between all types. I obtain this when the � and � are statistically independent

of each other so that the only reason why the problem is truly multidimensional is that the two

goods are strict net substitutes (that is � > 0). In that case, condition (20) binds at the optimal

allocation only for � = � if the distribution of � has a nonincreasing density. For densities that are

increasing over some range, even if independent, the analysis becomes more involved, but remains

tractable, as condition (20) binds over a single interval at the optimum. To study that case it is

instructive to analyze �rst a case that leads to complete bunching. That is the case when the two

goods are neutral (that is � = 0), so the only reason that the problem is multidimensional is that

there is some correlation of types. If � and � are a¢ liated4 , then the problem involves bunching
4This is consistent with assumption I as a¢ liation implies reverse hazard rate dominance (see Shaked and
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over the whole support. Finally, I characterize the solution if types are a¢ liated and the goods

strict net substitutes. In that case, bunching occurs again for types at the lower end of costs.

7 Strict net substitutes, independence, and full separation

In this section, I focus on the case where there is a real, that is a non-information based reason for

bunching. If � > 0; then the two goods are strict net substitutes in the regulator�s payo¤ function.

Raising production from q1 to q2 raises the marginal cost of producing good one. To isolate the

role of this substitutability, I assume in this section that knowing � does not provide any additional

information about � :

Assumption Ii: f (� j� ) = f
�
�
��� � = f (�) :

To eliminate bunching from the problem, I impose:

Assumption Iii: f� (�) � 0 and @
@�

1�F (�)
f(�) � 0:

This assumption serves two purposes. First, guarantees that the monotonicity constraints (15)

are automatically satis�ed. Second, it guarantees that at the solution to problem P�, (20) binds

only at � = �:

Consider thus a �doubly reduced�problem where the regulator maximizes (19) subject to

� (�; �) = 0: (21)

For future reference, I denote this problem as P��. Under assumptions Ii and Iii, solving the

doubly reduced problem picks up the full optimum.

Let k denote the Lagrange multiplier attached to the constraint (21) : I can now characterize

the solution to my problem.

Proposition 2 Suppose that � is su¢ ciently large and � is strictly positive. Then, under Assump-

tions Ii and Iii, the solution to the regulation problem is given by the quality schedules q� (�) = q1

and q� (�) = q2, the quantity schedules x� (�) and x� (�) de�ned by the conditions�
V 1x (x

� (�))� Cx
�
x� (�) ; q2; �; �

�
� (1� �) F (�)

f (�)

�
�f (�) + k� = 0 (22)

and �
V 1x (x

� (�))� Cx (x� (�) ; q1; �; �)� (1� �)
F (�)

f (�)

�
(1� �) f (�)� k� = 0; (23)

Shantikumar (2007)).
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and the associated transfer schedules t� (�) and t� (�) de�ned by (9) : Moreover, �� <~� and either

k� � � (1� �) and �� = 0; or (24)

k� = � (1� �) and �� > 0: (25)

The proof of the Proposition simply consists in verifying that all the constraints are met; the

details are in the appendix. It is easy to verify that the solution schedules (22) and (23) satisfy

x (�) = x (�) =) dx (�)

d�
� dx (�)

d�
; (26)

a single crossing condition. Since these schedules are continuous, they do indeed cross at most

once. Furthermore, it cannot be the case that x (�) > x (�) for all �; since that would imply that

condition (20) is be slack, contradicting the lemma above. Thus, two cases can arise. First, it is

possible that x (�) < x (�) for all �: Since

�� (�; �) = x (�)� x (�) ;

in this case � (�; �) is minimized at � = �, which is consistent with (20) binding only at �: Second,

it is possible that x (�) < x (�) for small � and x (�) > x (�) for large �: In that case � (�; �) is

increasing for small � and decreasing for large �; which is again consistent with (20) binding only

at �: It is also straightforward to verify monotonicity of the schedules de�ned by (22) and (23) ;

but I refer the reader to the appendix for this.

The solution is a remarkably simple pair of �rst-order conditions. Up to the optimal choice

of �� Proposition 2 provides a complete characterization of the optimum. The solution schedules

(22) and (23) di¤er markedly from their counterparts for the case where � is known. In particular,

x� (�) is distorted upwards relative to the case where the cost of producing good two is known, and

x� (�) is distorted downwards relative to that case. The reason is of course that the schedules one

obtains for known costs of producing good two violate constraint (20) : A particular implication

of constraint (20) being binding is that the schedules (22) and (23) violate the �no distortion at

the top� condition both within �rms with the same cost of producing good two and overall. A

�rm with cost parameters
�
�; �
�
produces more than the e¢ cient quantity of good one, a �rm with

cost parameters (�; �) produces less than the e¢ cient quantity of good one. These distortions are

largest when k� the equilibrium value of the multiplier attached to constraint (20) is as large as

possible. I now show that the upper bound on k� can be attained.
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7.1 The complete optimum for the uniform case

As shown in the proof of Proposition 2, the problem is concave in the choice variables. Hence,

�� > 0 if and only if k (0) � k (�)j�=0 > � (1� �) : It is straightforward to compute k (0) from

conditions (22), (23) ; and (21) : To do so, one needs to assume a particular density. I now compute

the full optimum for the case of a uniform type distribution. I obtain

x� (�) =
�
V 1x
��1�

� + (1� �) (� � �)
� � �

+ �q2 �
k

�

�
� � �

��
(27)

and

x� (�) =
�
V 1x
��1�

� + (1� �) (� � �)
� � �

+ �q1 +
k

1� �
�
� � �

��
(28)

From (21) with � = 0; I conclude that k (0) satis�es the condition �q2 � k(0)
�

�
� � �

�
= �q1 +

k(0)
1��

�
� � �

�
; for otherwise I would have either x� (�) > x� (�) for all � or x� (�) < x� (�) for all �;

and both possibilities are inconsistent with condition (21) : Hence, I have k (0) = (1��)�
��� � (q2 � q1) :

The following result is now immediate:

Proposition 3 For a uniform distribution of �; the optimal quantity schedules are given by (27)

and (28) ; where �� > 0 and k� = � (1� �) for 1��
��� � (q2 � q1) > (1� �) :

The conditions in the Proposition are easy to meet - and consistent with the requirement that

� be su¢ ciently large. Thus, leaving a rent to type
�
�; �
�
is natural, rather than a pathological

outcome. The intuition for the result is that increasing � allows the regulator to tailor the quantity

schedules x� (�) and x� (�) better to the marginal costs - which are higher for types with low cost of

producing good two, because they are asked to produce the larger amount of good two. It becomes

optimal to do so if, all else equal, the weight attached to �rm pro�ts becoms larger, if the fraction

of �rms with a low cost of producing good two becomes smaller, and if the di¤erence in marginal

costs of producing good one become larger.

7.2 Optimal pricing with rents for ine¢ cient producers

For the case where the regulator leaves a positive rent to all high quality producers, the solution

has quite unconventional features. Substituting k� = � (1� �) (from (25)) into (22) and (23) ; I

obtain the optimal quantity schedules for the case where �� > 0 :

V 1x (x
� (�)) = Cx

�
x� (�) ; q2; �; �

�
� (1� �) 1� F (�)

f (�)
(29)
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and

V 1x (x
� (�)) = Cx (x

� (�) ; q1; �; �) + (1� �)
�
1�� + F (�)

f (�)
: (30)

Since V 1x (x) = P
1 (x) ; these conditions relate marginal prices to marginal costs and statistics of

the type distribution. The optimal marginal prices of the producer with low costs of producing

good two are below marginal costs for all but the the least e¢ cient type
�
�; �
�
: This is to implement

a quantity allocation that is distorted upwards relative to the �rst-best quantity for all but the

least e¢ cient type
�
�; �
�
: The least e¢ cient type produces the e¢ cient quantity. For producers

with high costs of producing good two, the pricing scheme and the implemented allocation for good

one has almost but not quite the traditional features: these �rms all price above marginal costs,

even the most e¢ cient of these producers. Obviously, these distortions arise due to the constraint

that prevents the �rms with the low cost of producing good two from producing a low amount of

good two, that is from mimicking the high-good-two-cost-producer with the same cost of producing

good one.

It is possible to characterize the solution also for the case of an increasing density. However, it

is most convenient to present this case after the analysis of correlated types, because the result is

basically a corollary of that analysis.

8 Neutral goods, a¢ liated types, and complete bunching

In this section I focus on information based reasons for binding constraints in both dimensions. In

particular, I assume that � = 0; that is, the goods are neutral. Moreover, I impose:

Assumption Ai: � and � are a¢ liated, i.e. f(�j� )
f(�j� ) is increasing in �:

The reason I assume a¢ liation5 is that it allows me to pin down the bunching region.

Lemma 4 i) If the schedules x (�) and x (�) de�ned by 
V 1x (x (�))� Cx

�
x (�) ; q2; �; �

�
� (1� �)

F
�
�j �
�

f
�
�j �
� !�f ��j ��+ k = 0 (31)

and �
V 1x (x (�))� Cx (x (�) ; q1; �; �)� (1� �)

F (�j �)
f (�j �)

�
(1� �) f (�j �)� k = 0; (32)

satisfy for any k � 0

x (�) = x (�) =) dx (�)

d�
>
dx (�)

d�
; (33)

5A¢ liation is consistent with the reverse hazard rate order; more precisely, a¢ liation implies the reverse hazard

rate order but is not implied by it. (See Shaked and Shantikumar (2007)).
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then at the solution to problem P�, constraint (20) is binding on a set
�
�; �0

�
for some �0 � �:

ii) For � = 0 and under assumption A, x (�) and x (�) de�ned by (31) and (32) satisfy (33) :

The proof of the Lemma is straightforward. On any subinterval of the type space between

any two points where constraint (20) binds, the incremental changes of the extra rent type a

�rm with low cost of producing good two receives relative to a �rm with high costs of producing

good two and the same cost of producing good one, must sum to zero. But then, I face on this

subinterval a problem that is essentially identical to problem P��: Hence, I get solution schedules

that are analogous to (22) and (23) on that subinterval: If these schedules satisfy a single crossing

condition, then on any subinterval where constraint (20) is slack, the schedules x (�) and x (�)

cross at most once. They do have to cross at least once so as to guarantee the incremental rents

of high versus low � types add up to zero. Suppose now there were two points �1 and �2 such that

(20) binds for all � � �1 and for all � � �2; but not for any � in between �1 and �2. As I have

just argued, this would imply that x (�1) is above x (�1) so that �� (�1; �) = x (�1) � x (�1) < 0:

However, since (13) binds at �1, I have � (�1; �) = 0, so � (�; �) < 0 for � close to but larger than

�1:

To rule out problems of bunching in the � dimension, I assume that

Assumption Aii: F (�)
f(�) is nondecreasing in �:

Although the solution procedure is quite lengthy, the solution to the regulator´s problem takes

a very simple form:

Proposition 4 For � = 0; � su¢ ciently large, and under Assumptions Ai and Aii, the solution

to problem P� is given by the quality schedules q� (�) = q1 and q� (�) = q2 in conjunction with

�� = 0, and quantity schedules x� (�) = x� (�) � x� (�) where x� (�) satis�es

V 1x (x
� (�)) = � + (1� �) F (�)

f (�)
; (34)

and the associated transfer schedules t� (�) and t� (�) de�ned by (9)

There is complete bunching of types, that is the solution schedules become independent of �

altogether - except for the allocation of good two. The quantity schedule has the familiar features:

there is no distortion at the top, there is a downward distortion for all types with cost larger than

the minimum, and there is no rent at the bottom.
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9 Hybrid cases: bunching for low �, separation for high �

The previous analysis suggests that strict substitutability (that is � > 0) is necessary for rents at

the bottom and separating �rms, at least if one is willing to accept a¢ liation as a good assumption.

In this section, I analyze the case where there is strict subsitutability between goods and at the

same time the schedules de�ned by (31) and (32) satisfy (33) : To add new insights relative to the

two cases already studied, I impose a restriction on the paramters:

Assumption Hi: � (q2 � q1) > (1� �) 1

f( �j�)
If the parameters fail to satisfy the condition in Assumption Hi, then the solution would coincide

with one of the cases I have already discussed.

Second, to rule out problems of bunching, I assume

Assumption Hii: @@�
F (�)
f(�) � 0:

Moreover, I require a set of quite restrictive assumptions on the distribution of types to guar-

antee that the monotonicity requirement on the solution schedules is always met and to organize

the bunching regions in a tractable way. The conditions needed for this are either

Assumption HAi: f�
�
�j �
�
� 0 and @

@�

1�F( �j�)
f( �j�)

� 0; and

Assumption HAii: f� (�j �) � 0 and @
@�

�
1��+F ( �j�)
f( �j�) � 0:6

Or, alternatively, Assumption Ii (independence) and in addition

Assumption Iiii: f� (�) � 0:

The solution is a mixture between the case of complete separation and of complete bunching:

Proposition 5 Suppose � is positive but close to zero, � is smaller, but su¢ ciently close to one,

� is su¢ ciently large, � is su¢ ciently small, and Assumptions Hi and Hii hold. Then, if the the

type distribution satis�es in addition either assumption HAi and HAii or alternatively assumption

Ii and Iiii the solution to problem P� is given by the quality schedules q� (�) = q1 and q� (�) = q2

in conjunction with �� > 0 and quantity schedules that satisfy for � � �0

V 1x (x (�)) = Cx
�
x (�) ; q2; �; �

�
� (1� �)

1� F
�
�j �
�

f
�
�j �
� (35)

and

V 1x (x (�)) = Cx (x (�) ; q1; �; �) + (1� �)
�
1�� + F (�j �)
f (�j �) : (36)

�0 is the unique point of intersection of these schedules if such an intersection exists. For � < �0;

6Notice that f� ( �j �) � 0 � f�
�
�j �

�
is a special case of a¢ liated random variables.
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the quantity schedules for good one satisfy x� (�) = x� (�) � x� (�) where x� (�) satis�es

V 1x (x
� (�)) = � + �

�
g
�
�
�� �� q2 + g (�j �) q1�+ (1� �) F (�)

f (�)
: (37)

The associated transfer schedules t� (�) and t� (�) are de�ned by (9).

There is bunching of di¤erent � types who have the same marginal cost parameter � at the low

end of the � support; at the high end there is separation of such types. Moroever, at the point

where the regime changes from bunching to separation of di¤erent � types, the solution schedules

switch continuously from one regime to the other. The idea to show this is the following. The

value of the regulator�s payo¤ function at an optimum should be invariant to small changes in the

switch-point �0: This requires that, conditional on � = �0; the expected value of the objective at

�0 - where there is bunching - should be the same as the expected value of the objective just after

the switch point, that is at � = �0 + " for " positive but arbitrarily small. This value matching

condition essentially boils down to requiring continuity of the solution schedules.

Consider now the regulator�s interest, to leave a positive rent to type
�
�; �
�
: While this would

never happen in the case of known ��types, the advantage in the current context is that a higher

� shifts the switch point �0 to the left. In other words, there is a new trade-o¤ between rent

extraction and e¢ ciency. The solution schedules are constrained e¢ cient given the informational

asymmetry about �: Raising � allows the regulator to get closer to the optimal solution schedules

that are not constrained by the informational asymmetry about �: Let b�x� ��� denote the optimal
quantity that the regulator would require a �rm with type

�
�; �
�
to produce if that �rms cost of

producing good two were known; b�x� ��� is de�ned by condition (16) in Proposition 1. Moreover,
let xfb

�
�
�
denote the �rst-best e¢ cient quantity allocation for type

�
�; �
�
: �� > 0 for � small

enough if and only if b�x� ��� > xfb ��� ; which is equivalent to Assumption Hi being met.
Using standard envelope theorems I observe that the e¤ect of a small increase in � on the

regulator�s payo¤ is equal to � (1� �)� + k (�) : The marginal cost of setting � > 0 is that an

additional rent of � has to be left to all �rms with a high quality capacity. There is a measure � of

such �rms and the cost enters the regulator�s objective with a weight of (1� �) : On the other hand,

there is a bene�t to raising �which is measured by k (�) ; the value of the multiplier attached to

constraint (13) over the separation region
�
�0; �

�
: Clearly, k (�) is the higher the more the presence

of �rms with quality capacity � impinges the regulator from pursuing an optimal regulation policy

for �rms with a lower quality capacity. In particular, if the regulator would, when he knew � but

not �; have the �rm of type
�
�; �
�
produce more than the �rst-best e¢ cient amount for a �rm of
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type
�
�; �
�
; then the value of the multiplier is larger than the shadow cost of raising �: Since the

regulator�s objective is concave in �; this argument shows that the unique optimal � is positive

under the conditions given in the proposition.

10 Concluding remarks

I have solved a regulation problem featuring two dimensional asymmetric information about the

costs of production of two goods in some detail. The optimal allocation di¤ers markedly from its

one-dimensional counterpart, except in special cases. Most interestingly it can be optimal to dis-

tort production upwards instead of downwards. The rationale for this result is a trade-o¤ between

e¢ ciency and rent extraction that involves the second dimension of asymmetric information, and

this trade-o¤ feeds back into the e¢ ciency-rent extraction trade-o¤ in the �rst dimension. More-

over, it can be optimal to leave rents to the most ine¢ cient producer among those with a low cost

of producing the second good. The rationale is again that increasing this rent allows the regulator

to better resolve the standard trade-o¤ between e¢ ciency and rent-extraction within groups of

producers with the same cost of producing good two (but di¤erent and privately known costs of

producing good one).

11 Appendix

Proof of Lemma 3. Let � = Pr
�
� = �

�
: The �reduced�problem where I neglect the monotonic-

ity constraints on x (�) and x (�) can be written as follows:

� (�) = max
u(�);u(�)

264 �
R �
�
B
�
x (�) ; �; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
R �
�
B (x (�) ; �; �; �) f (� j� ) d�

375
s:t: � +

�Z
�

x (y) dy �
�Z
�

x (y) dy � 0

Letting z � �
R �
�
x (y) dy and z � �

R �
�
x (y) dy I can note further that x = z� and x = z�:

I can view this as a control problem with Hamiltonian of the following form:

H = B
�
x (�) ; �; �; �

�
�f
�
�
��� �+B (x (�) ; �; �; �) (1� �) f �� ��� �

+�x+ �x+ � (� � (z � z))
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Di¤erentiating with respect to state variables, I get the conditions of optimality

@H

@z
= � = ���

@H

@z
= �� = ���;

di¤erentiating with respect to the controls I get

@H

@x
=

�
V 1x (x (�))� Cx (x (�) ; q1; �; �)� (1� �)

F (� j� )
f (� j� )

�
(1� �) f (� j� ) + � = 0 (38)

@H

@x
=

 
V 1x (x (�))� Cx

�
x (�) ; q2; �; �

�
� (1� �)

F
�
�
��� �

f
�
�
��� �

!
�f
�
�
��� �+ � = 0

The Kuhn-Tucker conditions are

� � (z � z) � 0; � � 0; and � (� � (z � z)) = 0:

For the transversality conditions, I have to distinguish two cases. If � (�) = 0; then z (�) and z (�)

are both free and the transversality conditions are

� (�) = � (�) = 0:

If � (�) > 0; then z (�) is fully determined once z (�) is given and vice versa. Hence, I do not impose

any transversality condition in this case.

Suppose that � (�) = 0 and that � (�) = 0 on a set of positive measure
�
�; �0

�
: From conditions

(38) it is clear that � and � are continuously di¤erentiable in � whenever u and u are continuously

di¤erentiable in �: Using the conditions of optimality for the state variables, �� = �� and �� = �;

and the transversality conditions - which must hold if � (�) = 0 - I have for � � �0

� (�) = � (�) +

�Z
�

��d� = �
�Z
�

� (�) d� = 0

and

� (�) = � (�) +

�Z
�

� (�) d� = 0:

Hence, for � 2
�
�; �0

�
; I have

V 1x (x (�))� Cx (x (�) ; q1; �; �)� (1� �)
F (� j� )
f (� j� ) = 0

and

V 1x (x (�))� Cx
�
x (�) ; q2; �; �

�
� (1� �)

F
�
�
��� �

f
�
�
��� � = 0:
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Of course these conditions are equivalent to those obtained in Proposition 1. However, under

assumption M, it is easy to see that for � � �0

x (�) > x (�) :

The remainder of the argument, showing that � (�) = 0 over a nonempty interval � 2
�
�; �0

�
leads

into a contradiction, is in the text.

Proof of Proposition 2. The proof is split into two parts. In the �rst part, (after spelling

out the Lagrangian of the problem), I prove that the �rst-order conditions are su¢ cient for an

optimum. In the second part, I show that the solution is not only a solution to the reduced

problem but satis�es also the neglected constraints.

The Lagrangian of the problem is

L = max
x(�);x(�);�

264 �
R �
�
B
�
x (�) ; q2; �; �

�
f
�
�
��� � d� � � (1� �)�

+(1� �)
R �
�
B (x (�) ; q1; �; �) f (� j� ) d�

375 (39)

+k

0B@ �Z
�

(x (�)� x (�)) d� + �

1CA
i) The objective is strictly concave in x and x and the constraint is linear in these variables. By

a standard theorem, the �rst-order conditions in x and x; respectively, are also su¢ cient for an

optimum. Consider now the derivatives with respect to �: I have

@L

@�
= �� (1� �) + k

and
@2L

@�2
=
dk

d�
:

I can compute dk
d� from a total di¤erentiation of the constraint. I obtain

dk

d�
=

1R �
�
(xk (�; k)� xk (�; k)) d�

:

From a total di¤erentiation of (22) and (23) ; I get

dx

dk

�
= � 1

Bxx
�
x� (�) ; q2; �; �

�
�f
�
�
��� � > 0 (40)

and
dx�

dk
=

1

Bxx (x
� (�) ; q1; �; �) (1� �) f (� j� )

< 0: (41)
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This shows that dk
d� < 0;and hence the problem is concave in the choice variable �: It follows that

the condition of optimality is that either �� = 0 and

k (��) � � (1� �)

or �� > 0 and

k (��) = � (1� �) :

Moreover, as k (~�) = 0; I note that �� < ~�:

ii) Consider �rst incentive compatibility in the � dimension. The schedules (22) and (23) are

continuous; hence they are di¤erentiable everywhere and if they satisfy dx(�)
d� � 0 and dx(�)

d� � 0;

they are monotonic. Consider �rst the schedule x (�) : From a total di¤erentiation of (22) ; I obtain�
V 1x (x

� (�))� Cx
�
x� (�) ; q2; �; �

�
� (1� �) F (�)

f (�)

�
�f (�) + k� = 0 (42)

and �
V 1x (x

� (�))� Cx (x� (�) ; q1; �; �)� (1� �)
F (�)

f (�)

�
(1� �) f (�)� k� = 0; (43)

dx�

d�
=

�
1 + (1� �) @

@�
F (�)
f(�)

�
+ k

�
f�(�)

f(�)2

V 1xx (x
� (�))

: (44)

From Assumption Iii, f� (�) � 0; so the numerator is minimized for k as large as possible, that is

for k = � (1� �) : Substituting back into (44) ; the numerator is bounded below by

1 + (1� �) @
@�

F (�)

f (�)
+ (1� �) f� (�)

f (�)
2 = 1� (1� �)

@

@�

1� F (�)
f (�)

� 0;

where the �nal inequality uses again Assumption Iii.

A total di¤erentiation of (23) gives

dx�

d�
=

�
1 + (1� �) @

@�
F (�)
f(�)

�
� k�

1��
f�(�)

f(�)2

V 1xx (x
� (�))

; (45)

which clearly satis�es dx
�
(�)

d� � 0 for all � since f� (�) � 0:

To demonstrate incentive compatibility in the � dimension, I show that the assumptions imply

that the schedules x (�) and x (�) satisfy (26). Indeed it is easy to verify that f� (�) � 0 implieas

that x (�) = x (�) =) dx(�)
d� � dx(�)

d� :

Proof of Lemma 4. To prove the lemma, I show the bunching region is convex. Together

with Lemma 3, this demonstrates that bunching occurs only at the low end of the support, and

does so over an interval.
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The bunching region is convex if and only if there cannot exist two points �0 and �00 with �00 > �0

such that (20) binds at �0 and �00 but not in between. Suppose the contrapositive were true, and

two such points did exist. Then, I know that

�00Z
�0

x (y) dy �
�00Z
�0

x (y) dy = 0; (46)

because (20) is binding at �0 and �00: But then, I can split the problem into three subproblems,

where each subproblem is to choose optimal schedules x (�) and x (�) on the (possibly empty)

subintervals,
�
�; �0

�
;
�
�0; �00

�
; and

�
�00; �

�
: This is possible, because I solve a �reduced� absent

monotonicity constraints on x (�) and x (�) : On the subinterval
�
�0; �00

�
, the problem is identical

to the isoperimetric problem solved in the proof of lemma 3 with �0 replacing � and �00 replacing

�; and where � = 0: Hence, the optimal schedules satisfy conditions (22) and (23) :

Suppose (33) holds, so x (�) = x (�) =) dx(�)
d� � dx(�)

d� : Then, the schedules x (�) and x (�) can

only satisfy condition (46) if they cross at least once. Moreover, schedule x (�) must cross schedule

x (�) from above. Hence, I must have x
�
�0
�
> x

�
�0
�
: But then

��
�
�0; �

�
= x

�
�0
�
� x

�
�0
�
< 0

contradicting the supposition that (20) is non-binding for � 2
�
�0; �00

�
:

Proof of Proposition 4. The proof is organized in two parts. In the �rst part, I show

that the solution schedules are continuous at the switching point between the bunching and the

separation region. This argument holds for arbitrary value of �: In the second part I choose �

optimally and demonstrate that �� = 0 under the assumptions of the proposition. This implies

that the bunching region extends over the whole domain of �:

Part i): continuity of the solution schedules

Consider again the control problem spelled out in the proof of Lemma 3. I �rst show that for

� � �0; the optimal schedule satis�es x (�) = x (�) = x� (�) and x� (�) solves

V 1x (x
� (�))� � � �

�
g
�
�
�� �� q2 + g (�j �) q1�� (1� �) F (�)

f (�)
= 0: (47)

To see this, I can use the conditions for � (�) and � (�) and the equations of motion for these

costate variables to get

� (�) = � (�)�
�Z
�

� (�) d�

and

� (�) = � (�) +

�Z
�

� (�) d� :
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Substituting back into (38)�
V 1x (x (�))� � � �q1 � (1� �)

F (� j� )
f (� j� )

�
(1� �) f (� j� ) = �� (�) +

�Z
�

� (�) d�

 
V 1x (x (�))� � � �q2 � (1� �)

F
�
�
��� �

f
�
�
��� �

!
�f
�
�
��� � = �� (�)�

�Z
�

� (�) d�

Recall that �f
�
�
��� � = f ��; �� and (1� �) f (� j� ) = f (�; �) : Letting g (� j� ) denote the probabil-

ity density function for � conditional on �; I can substitute for f (�; �) = g (� j� ) f (�) : Moreover,

note that x = x as � > 0 for � � �0: Adding the two conditions of optimality for the control

variables, and dividing by f (�) I get

V 1x (x
� (�))� � � �

�
g (� j� ) q1 + g

�
� j�

�
q2
�
� (1� �) F (�)

f (�)
=
�� (�)� � (�)

f (�)
(48)

where I have used the fact that �F
�
�
��� �+ (1� �)F (� j� ) = F (�) :

To complete the argument I now argue that �� (�)� � (�) = 0: Since x (�) = x (�) = x� (�) for

� � �0; any solution of (48) for given �� (�) � � (�) satis�es constraint (20) : Moreover, � (�) and

� (�) have no in�uence on the value of the objective for � > �0; because the costate variables are

allowed to jump at points where the state variable constraint switches from binding to non-binding.

Moreover, � (�) and � (�) have no in�uence on the location of the switching point �0 either. Hence,

at the optimum � (�) and � (�) must be such that, conditional on �; the expected value of the

objective is maximized. Hence, � (�) = �� (�), and I obtain the expression in the Proposition.

For � > �0; � (�) = 0; so that � (�) = k and � (�) = k for � > �0: A priori it is neither clear how

k relates to k; nor is it clear how the values of the costate variables relate to �
�
�0
�
and �

�
�0
�
:

That is, there may be jumps in the costate variables at �0:

I �rst show that k + k = 0: To see this, consider a candidate pair of schedules that give rise

to a switch point �0: Clearly, for the subinterval
�
�0; �

�
; constraint (20) is binding only at �0: But

then, choosing the optimal schedules x (�) and x (�) on the subinterval
�
�0; �

�
is equivalent to the

isoperimetric problem (39) with �0 replacing �: Hence, k � k = �k:

Finally, I show that the solution schedules are continuous at the switch point �0:

I can write the value of the objective as

�
�
�0
�
=W 1

�
�0
�
+W 2

�
�0
�
� � (1� �)�; (49)

where

W 1
�
�0
�
� �

�0Z
�

B
�
x� (�) ; q2; �; �

�
f
�
�
��� � d� + (1� �) �0Z

�

B (x� (�) ; q1; �; �) f (� j� ) d�
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and

W 2
�
�0
�
� �

�Z
�0

B
�
x (�) ; q2; �; �

�
f
�
�
��� � d� + (1� �) �Z

�0

B (x (�) ; q1; �; �) f (� j� ) d�

+k

0B@� + �Z
�0

x (y) dy �
�Z
�0

x (y) dy

1CA :
Clearly �0 must pass the following test: the value of the objective, �

�
�0
�
; should not increase

through a small change in �0: Invoking the envelope theorem, the e¤ect of a marginal change in �0

is

��0
�
�0
�
=W 1

�0
�
�0
�
+W 2

�0
�
�0
�

where

W 1
�0
�
�0
�
� �B

�
x�
�
�0
�
; q2; �

0; �
�
f
�
�0
��� � d� + (1� �)B �x� ��0� ; q1; �0; �� f ��0 j� �

and

W 2
�0
�
�0
�
= ��B

�
x
�
�0
�
; q2; �

0; �
�
f
�
�0
��� �� (1� �)B �x ��0� ; q1; �0; �� f ��0 j� � (50)

�k
�
x
�
�0
�
� x

�
�0
��

Clearly, at the optimum I must haveW 1
�0
�
�0
�
+W 2

�0
�
�0
�
= 0; so the values of the objectives evaluated

at the bound �0 must match. One solution is clearly reached when x
�
�0
�
= x

�
�0
�
= x�

�
�0
�
: I

now show this solution is unique. To make the dependence of x
�
�0
�
and x

�
�0
�
on k explicit, I

write these schedules as x
�
�0; k

�
= x

�
�0; k

�
; respectively. A total di¤erentiation of the integral

constraint

� +

�Z
�0

x (y; k) dy �
�Z
�0

x (y; k) dy = 0

delivers
dk

d�0
=

x
�
�0; k

�
� x

�
�0; k

�R �
�0
(xk (y; k)� xk (y; k)) dy

Recall from (40) and (41) that in the proof of Proposition 2 that dx
dk > 0 and

dx
dk < 0: Hence, the

denominator of the expression for dk
d�0 is positive. Hence, I have

dk
d�0 < 0 for x

�
�0; k

�
< x

�
�0; k

�
and dk

d�0 > 0 for x
�
�0; k

�
> x

�
�0; k

�
: Thus k is minimized when �0 is such that x

�
�0; k

�
= x

�
�0; k

�
:

Again using (40) and (41) ; for any other value of �0, I will have x
�
�0; k

�
> x

�
�0; k

�
: However, it

is easy to see that the values

x̂ � argmax
x

��
V 1 (x)� C

�
x; q1; �

0; �
��
f
�
�0 j�

�
� (1� �)F

�
�0 j�

�	
29



and

x̂ � argmax
x

��
V 1 (x)� C

�
x; q2; �

0; �
��
f
�
�0
��� �� (1� �)F ��0 ��� �	

satisfy x̂ � x̂ due to Assumption M: Hence, the sum of the terms in the �rst line in (50) decreases

by an increase in k: Moreover, �k
�
x
�
�0
�
� x

�
�0
��
becomes negative. Hence, there can be no other

solution.

Part ii): the optimal value of �

It is easy to see that the derivative of (49) with respect to � is still given by

�� (�) = �� (1� �) + k; (51)

and the second derivative is still given by ��� = dk
d� whenever this is well de�ned: Letting x (�; k)

and x (�; k) denote the functions de�ned by (22) and (23) ; and using the fact that (20) is binding

at �0 (k) ; I have for any � > 0

dk

d�
=

1R �
�0(k)

(xk (y; k)� xk (y; k) dy) dy
< 0;

where I have used the fact that e¤ects of k on �0 (k) exactly cancel out because x
�
�0 (k) ; k

�
=

x
�
�0 (k) ; k

�
:Hence, the optimum features �� = 0 if k (�)j�=0 � � (1� �) and �� > 0 if k (�)j�=0 >

� (1� �) :

Due to the single-crossing condition I must have �0 = � for �= 0: This follows directly from

substituting �00 = � into condition (46) in the proof of Lemma 4. For � = 0; constraint (20) is

binding at �; by convexity of the bunching region, the constraint is binding for all �:

Hence, when evaluating the derivative �� (�) at � = 0; I can use the fact that x
�
�
�
= x

�
�
�
=

x� (�) for � = 0: Hence, for � = � and � = 0; I can write (47) in explicit form as

�
V 1x
�
x�
�
�
��
� �
�
f
�
�
�
= (1� �) (52)

From (23) ; k (0) satis�es

�
V 1x
�
x�
�
�
��
� �
�
(1� �) f

�
� j�

�
� (1� �) = �� (1� �) + k (0) ;

Substituting from (52) ; we have

�
V 1x
�
x�
�
�
��
� �
�
(1� �) f

�
� j�

�
� (1� �) = �

�
V 1x
�
x�
�
�
��
� �
�
�f
�
�
��� �

and thus

�� (0) = �
�
V 1x
�
x�
�
�
��
� �
�
�f
�
�
��� � < 0:
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Proof of Proposition 5. The proof is organized in two parts. In the �rst part, I give

conditions for �� > 0: In the second part I show that the assumptions listed in the proposition

imply the desired monotonicity conditions, which in turn imply incentive compatibility.

Part i: the optimal level of �

It is easy to see that the derivative of (49) with respect to � is still given by

�� (�) = �� (1� �) + k; (53)

and the second derivative is still given by ��� = dk
d� whenever this is well de�ned: Letting x (�; k)

and x (�; k) denote the functions de�ned by (22) and (23) ; and using the fact that (20) is binding

at �0 (k) ; I have for any � > 0

dk

d�
=

1R �
�0(k)

(xk (y; k)� xk (y; k) dy) dy
< 0;

where I have used the fact that e¤ects of k on �0 (k) exactly cancel out because x
�
�0 (k) ; k

�
=

x
�
�0 (k) ; k

�
:Hence, the optimum features �� = 0 if k (�)j�=0 � � (1� �) and �� > 0 if k (�)j�=0 >

� (1� �) :

Due to the single-crossing condition I must have �0 = � for �= 0: This follows directly from

substituting �00 = � into condition (46) in the proof of Lemma 4. For � = 0; constraint (20) is

binding at �; by convexity of the bunching region, the constraint is binding for all �:

Hence, when evaluating the derivative �� (�) at � = 0; I can use the fact that x
�
�
�
= x

�
�
�
=

x� (�) for � = 0: Hence, for � = �; I can write (47) in explicit form as

�
V 1x (x

� (�))� �
�
f (�)� �

�
�f
�
�
��� � q2 + (1� �) f �� j� � q1� = (1� �) (54)

From (23) (allowing for dependence); k (0) satis�es

�
V 1x
�
x�
�
�
��
� �
�
(1� �) f

�
� j�

�
� �q1 (1� �) f

�
� j�

�
� (1� �) = �� (1� �) + k (0) ;

Substituting from (54) for (1� �) ; I can write the left-hand side of this equation as

�
V 1x
�
x�
�
�
��
� �
�
(1� �) f

�
� j�

�
� �q1 (1� �) f

�
� j�

�
�
�
V 1x (x

� (�))� �
�
f (�) + �

�
�f
�
�
��� � q2 + (1� �) f �� j� � q1�

Simplifying, and using x�
�
�
�
= x�

�
�
�
; I obtain

�� (0) = �
�
V 1x
�
x�
�
�
��
� � � �q2

�
�f
�
�
��� �
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Again using (47) and subsituting for
�f(�j� )
f(�)

= g
�
�
�� �� and (1��)f(�j� )

f(�)
= g (�j �) I obtain

V 1x
�
x�
�
�
��
� � = �

"
�f
�
�
��� �

f
�
�
� q2 +

(1� �) f
�
� j�

�
f
�
�
� q1

#
+ (1� �) 1

f
�
�
�

and so

V 1x
�
x�
�
�
��
� � � �q2 = �

"
�
(1� �) f

�
� j�

�
f
�
�
� (q2 � q1)

#
+ (1� �) 1

f
�
�
� :

Thus,

�� (0) = �
 
�

"
�
(1� �) f

�
� j�

�
f
�
�
� (q2 � q1)

#
+ (1� �) 1

f
�
�
�!�f �� ��� �

Hence, �� (0) > 0 i¤

� (1� �) f
�
� j�

�
(q2 � q1)� (1� �) > 0:

Part ii: incentive compatibility of the schedules

The monotonicity follows mostly directly from the assumptions. The schedule x� (�) is monotonic

in � if
@

@�

�
�
�
g
�
�
�� �� q2 + g (�j �) q1�+ (1� �) F (�)

f (�)

�
� 0:

Di¤erentiating out, using g
�
�
�� �� = �f( �j�)

f(�) =
�f( �j�)

�f( �j�)+(1��)�f( �j�)
and so on, we have

@

@�
�
�
g
�
�
�� �� q2 + g (�j �) q1� = @

@�
�

24 1

1 + (1��)f( �j�)
�f( �j�)

q2 +
1

�f( �j�)
(1��)f( �j�) + 1

q1

35 � 0
where the inequality follows from HAi:

�
f�
�
�j �
�
� 0
�
and HAii: (f� (�j �) � 0) : For � su¢ ciently

small and � su¢ ciently close to unity, this e¤ect is dominated by @
@�

F (�)
f(�) � 0:
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