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Abstract

We investigate experimentally whether social learners appreciate the redundancy

of information conveyed by their observed predecessors’ actions. Each participant

observes a private signal and enters an estimate of the sum of all earlier-moving par-

ticipants’ signals plus her own. In a first treatment, participants move single-file and

observe all predecessors’ entries; Bayesian Nash Equilibrium (BNE) predicts that each

participant simply add her signal to her immediate predecessor’s entry. Although 75%

of participants do so, redundancy neglect by the other 25% generates excess imitation

and mild inefficiencies. In a second treatment, participants move four per period; BNE

predicts that most players anti-imitate some observed entries. Such anti-imitation oc-

curs in 35% of the most transparent cases, and 16% overall. The remaining redundancy

neglect creates dramatic excess imitation and inefficiencies: late-period entries are far

too extreme, and on average participants would earn substantially more by ignoring

their predecessors altogether. (JEL B49)
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1 Introduction

The theory of how people learn by observing the actions and beliefs of others underlies an

extensive and ongoing research program. Beginning with Banerjee (1992) and Bikhchandani,

Hirshleifer and Welch (1992), a literature on observational learning identifies how a rational

person who observes the behavior of another person with private information and similar

tastes may follow that person, even contrary to her own private information. Yet Eyster

and Rabin (2014) show ways that the logic of social inference requires that rational agents

greatly limit the scope of their imitation. If the actions a person observes are themselves

influenced by social learning, then the person should recognize the redundancy inherent in

prior actions and imitate only selectively. Hence extensive imitation is a mistake. Indeed,

in most settings full rationality dictates that players should anti -imitate some of those they

observe, as a way of subtracting off the correlation in the predecessors’ beliefs. For example,

if financial analysts write daily reports about an asset, and every day they read the previous

day’s reports in addition to receiving new private information, then if yesterday’s reports

were all great, a merely good report today signals bad news. Similarly, if multiple customers

post online reviews of a restaurant, each of them aggregating new information with previously

published reviews, a rational interpretation of reviews requires correcting for the influence

of previous reviews.

Accounting for redundancy proves challenging even in settings devoid of rational anti-

imitation. Experimental evidence, such as Kübler and Weizsäcker (2004), demonstrates

such failure. Even pre-dating the experimental evidence, doubts about whether people fully

account for redundancy motivated researchers to develop models of redundancy neglect. De-

Marzo, Vayanos and Zwiebel (2003), for instance, model the idea that people may treat as

independent repeated hearings of the same opinion, and show that this “persuasion bias”

generates inefficiency. Eyster and Rabin (2010) and Eyster and Rabin (2014) explore im-

plications of the assumption that people do not fully account for the redundancy in others’
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actions, showing that in most settings this can lead to long-run incorrect and overconfident

beliefs. By neglecting that those whom they imitate are themselves imitating, people end

up being so over-influenced by potentially misleading early actions that long-run beliefs can

converge to full confidence on the wrong state.

In this paper, we report on both the behavioral and efficiency properties of social learn-

ing in experiments designed to be conducive to efficient learning when rationality is common

knowledge, yet amenable to the detection of redundancy neglect when extent. Our exper-

iments are simple and—if it is common knowledge that all participants are strategically

sophisticated—do not require the use of Bayes’ rule. In each of two treatments, the partici-

pants sum up integers. Each participant privately observes an integer “signal” as well as the

public entries of all preceding participants. Her task is to aggregate the information: she

makes an entry herself and gets paid for entering a number as close as possible to her “tar-

get”, which is equal to her own signal plus those of all earlier-moving participants. Given

common knowledge of rationality, participants can recover the sum of their predecessors’

signals from the entries they observe through simple arithmetic. The experiment is designed

to highlight the logic of real-world social learning tasks, for example in the interpretation of

customer reviews, without demanding complicated math of those who understand the logic.

The lessons learned about rationality and redundancy neglect are varied. We observe very

frequent Nash play and relatively mild effects of redundancy neglect in one treatment, and

less Nash play and more redundancy neglect, including many extreme behavioral deviations

from Nash, in the other treatment. Overall, the frequency of Nash play exceeds that of clear

redundancy neglect, but the social consequences of the latter are severe.

In the first treatment—as in previous experiments—participants move single-file, and

anti-imitation therefore plays no part of the Bayesian-Nash-Equilibrium (BNE) prediction.

Empirically, 75% of participants employ their BNE strategies of simply adding their own sig-

nal to the previous entry. Most of the remaining 25% deviate in the direction of redundancy

neglect, although some also deviate by ignoring their predecessors. Consequently, the 75%
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who do the “right” thing wind up over-imitating; they would be better off by down-weighting

the information that they glean from their predecessors. On the other hand, participants

benefit from social learning—they do better than they would by ignoring their predecessors—

and two notable markers of redundancy neglect that were identified by Eyster and Rabin

(2014), overinfluence of initial movers and long-run extreme beliefs, appear neither strongly

nor statistically significantly.

In our second treatment, “multi file”, even mild redundancy neglect can be very socially

harmful. Here, participants move four at a time, which creates a large set of informa-

tional redundancies, causing BNE to predict frequent anti-imitation. Deviations from BNE

strategies are far more common than in the single-file treatment. Early signals are heavily

over-counted in multi file, pushing later entries towards costly extremities. The majority of

games end with beliefs that are ten-fold too distant from the ex-ante belief. On average,

participants lose from social learning in multi file—they would do better by ignoring others’

entries entirely and simply announcing their own signals.1

Our findings complement the contemporaneous evidence of Enke and Zimmermann (2015)

that people under-attend to correlation in signals, as well as several related findings in the

experimental social-learning literature consistent with redundancy neglect. For example,

Weizsäcker (2010) and March and Ziegelmeyer (2015) report on herding experiments in which

participants are too prone to follow consensus by their predecessors. The survey of Choi,

Gallo and Kariv (2015) reviews evidence that people communicating beliefs in a network

employ the DeGroot rule (DeGroot (1974))—taking as their posterior the average belief

of their neighbors—which, like redundancy neglect, ignores the observation (or network)

structure. Chandresekhar, Larreguy and Xandri (2017) provide experimental evidence in

a two-state setting with binary signals and actions that a model in which everyone uses a

version of the DeGroot rule modified to their setting fits the data better than any model in

1Nevertheless, we also uncover evidence of complex rational behavior: almost 16% of moves requiring
anti-imitation conform to BNE, which is the first evidence we know of where people rationally anti-imitate.
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which some agents are rational and others DeGroot.2 Our work differs from these papers in a

number of respects, especially in our main finding that people succumb to greater redundancy

neglect in an environment that calls for anti-imitation than in one that does not. In addition,

our experiments are the first to identify an environment in which the opportunity to learn

from their predecessors harms people on average.

Whereas many prior experimental papers use the single-file observation structure, our

four-file setting is novel and may appear arbitrary. As Eyster and Rabin (2014) discuss,

most observation structures other than the single-file one necessitate some anti-imitation.

We chose four-file because it is simple and requires anti-imitation. Real-world analogues

of this structure include actions that are taken by many individuals periodically, either

simultaneously or without the benefit of observing earlier movers in the same period. Airline

passengers, for instance, rate airlines at the end of each flight; students rate courses at the

end of each term. Every year, farmers choose how to plant or fertilize their fields, or doctors

choose which way to treat their patients. The more realistic the set-up, the less natural it

may be to assume common knowledge of the precise information structure—but even so the

rational solution will almost surely involve anti-imitation.

We specified few precise statistical tests or hypotheses before running the experiments but

predicted that redundancy neglect would lead to over-imitation, and hence work against the

BNE prediction of limited imitation (in the single-file treatment) and anti-imitation (in the

multi-file treatment). In our descriptive analysis of Sections 3 and 4, we formally investigate

the presence of an extreme form of redundancy neglect modeled in Eyster and Rabin (2010),

which they call “BRTNI play” (an acronym for “best response trailing näıve inference”),

and whose presence we did hypothesize. BRTNI play requires that a player in period t add

2Gale and Kariv (2003) explore Bayesian learning theoretically in social networks in which agents get one
dose of private information before repeatedly taking binary actions; after each period, each player observes the
actions of her “neighbors”. Choi, Gale and Kariv (2012) estimate Quantal-Response Equilibrium (McKelvey
and Palfrey 1995) from experimental data on that model. Golub and Jackson (2010) analyze DeGroot
behavior in a closely related environment.
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the entries of all players through period t − 1 to her own signal. This extreme prediction

would quickly generate absurdly high (positive or negative) entries in our setting. Overall,

the hit rate of BRTNI is modest. In the single-file treatment BRTNI play is observed much

less often than BNE, whereas in the multi-file treatment BRTNI outperforms BNE, yet not

by nearly the same margin.

Yet, Eyster and Rabin (2014) give a general definition of redundancy neglect, which

encompasses BRTNI play as well as much milder forms of over-counting. In the present

context, their general definition of redundancy neglect (roughly) requires that all players’

entries equal their signals plus some non-negative linear combination of all previous entries

whose coefficients sum to more than one. Whatever its exact form, redundancy neglect

predicts that early signals exert undue influence on later moves. This general pattern is

weakly confirmed in our first treatment and strongly confirmed in our second treatment.

Section 3 summarizes the results of the first, single-file treatment, where BNE predicts

that every player should simply enter her signal plus her immediate predecessor’s entry.

When done correctly by all players, every action equals its target. For ease of reference, we

shall refer to players who play this “naive Bayesian” strategy as Nebi. (Nebi is naive by

using the BNE strategy even when the available observations make it unlikely or impossible

that others are using the BNE strategy. A player whose predecessors are not Nebis does not

maximize expected payoff by being Nebi.) As indicated above, the data reveal the presence

of far more Nebi than BRTNI players: from t = 3 onwards, when the two behavioral rules

make different predictions, Nebi outnumbers BRNTI 14:1. The even simpler rule of following

one’s own signal—the prediction of Eyster and Rabin’s (2005) fully-cursed equilibrium as

well as Stahl and Wilson (1994), Nagel (1995), and Crawford and Iriberri’s (2007) (random)

Level-1—appears approximately as frequently as BRTNI. About 88% of decisions accord to

one of these three types of behavior. The remaining 12% either follow different rules or

appear to make sign errors. In aggregate, these deviations produce over-imitation: 72% of

participants who miss their target do so in the direction predicted by BRTNI and other
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forms of redundancy neglect. Participants would earn more by adding their signal to a

number 31% closer to zero than the number that they apparently use. Yet participants do

not over-imitate strongly enough to negate the advantages of following others: they earn

76% of the maximum sum possible, whereas ignoring other players would deliver only 71%

of the maximum payment.3

Section 4 summarizes the results in the second, multi-file treatment. Here too, BNE

reasoning demands only simple arithmetic of the players, but now involves anti-imitating

behavior. In period 1, optimal behavior remains trivial—a participant must just enter her

signal. In period 2, she should add her signal to the four entries observed in period 1. But in

period 3, because all four period-2 entries incorporate the signals of all four period-1 players,

BNE dictates that each player must add her own signal to the sum of period-2 entries minus

three times the sum of period-1 entries. Without such subtraction, period-3 players would

inefficiently quadruple count each period-1 signal. BNE actions in periods 4 to 6 take more

complicated and even less intuitive forms, but all involve a mix of adding and subtracting

observed entries. Surprisingly, we estimate that participants anti-imitate upwards of 35%

of the time in period 3 and 10% in periods 4 to 6. Nonetheless, Nebi play occurs much

less frequently in this treatment, and less frequently than BRTNI play during periods for

which the two models make different predictions: from t = 3 onwards, BRTNI outnumbers

Nebi 3:2. More generally, behavior corresponds less well to particular rules of thumb in this

game. Even including initial periods, BRTNI and Nebi jointly account for only 55% of the

data, and including the “cursed”or Level-1 follow-your-own-signal rule only brings explained

behavior up to 58% of the data. Nevertheless, the cumulative effect of the non-BNE decisions

is strong and clear. 78% of deviations from target go in the direction predicted by BRTNI.

Participants make entries with much greater magnitude than those predicted by BNE, and

on average would earn more by strongly shading their interpretation of prior entries towards

3Eyster and Rabin (2014) show how even mild over-counting of the sort of observed in this experiment
can, when extrapolated to longer time horizons, produce severe long-term costs.
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zero—optimally shading by 98%. Moreover, participants earn far less than they would by

relying purely on their private signals. The latter result is similar to—albeit more dramatic

than—subsequent evidence reported in March and Ziegelmeyer (2015) that experts with very

precise private information tend to lose out in situations where a sufficiently large crowd of

less-informed players contradicts the experts’ information.

Section 5 reports the results of two sets of regressions testing the BNE predictions. In

the first set, we regress participants’ entries in the various periods on earlier signals. BNE

predicts that all coefficients should equal one in both treatments, whereas redundancy neglect

predicts that players in period t should implicitly weight signals of periods t−2, t−3, . . . with

coefficients larger than one. While the regression results in the single-file treatment paints

a relatively positive picture of BNE, the results in the multi-file case confirm the presence

of redundancy neglect. Nine out of the ten point estimates of these coefficients exceed 1,

with estimates ranging from 3.0 to 19.6. In a second set of estimations, we regress entries on

past entries (and current signals) to uncover players’ strategies. In the multi-file treatment,

BNE predicts that players in period t assign negative coefficients to entries in periods t− 2

and t − 4. Although we discuss above and below evidence that some individuals engage in

anti-imitation, there is no suggestion of average anti-imitation. While two of the six relevant

point estimates are negative, they are very far from statistical significance.

Section 6 amends the previous analysis by allowing for probabilistic choice. Like in the

the depth-of reasoning analysis of Kübler and Weizsäcker (2004), we estimate two models

that encompass both Quantal Response Equilibrium and the Level-k family of models. The

results confirm the qualitative features described above: the parameter estimates in multi

file indicate lower best-response precision and lower belief in others’ rationality than in single

file.

Putting our approach in the perspective of the literature, we note that our experiments

differ in at least four ways from the standard experimental set-up developed by Anderson and

Holt (1997) and subsequent papers studying herding. First, by giving participants targets
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equal to the sums of signals received, our design isolates the redundancy-neglect error as much

as possible from both statistical and computational errors. Second, the rich signal and action

spaces allow us to finely identify the rules used by most participants; only rare happenstance

leads different rules (especially probabilistic rules) to generate identical responses. Third, the

rich action and signal spaces preclude the possibility that even rational social learners may fail

to learn efficiently, in the sense that social beliefs may be less extreme than they would be if

all private information were revealed, which is predicted in the coarser games of Anderson and

Holt (1997). The errors of redundancy neglect, highlighted in this paper, give rise to a very

different form of inefficiency: social beliefs are more extreme than they would be if all private

information were revealed. Fourth, and most important from an economics perspective,

we move away from the traditionally studied yet narrow band of herding settings where

the BNE strategy closely resembles a less-rational tendency to imitate, and where welfare

costs of over-imitation are limited. Our design thereby disentangles rational imitation from

irrational over-imitation, improving our understanding of real-world social-learning tasks like

interpreting financial reports or customer reviews.4

But there are several obvious limitations to our design. First, insofar as people do suffer

from various statistical biases, neutralizing those biases does not enhance realism. Second,

despite the strict BNE being “statistics-free” in this setting, once participants (rightly) start

to doubt the common knowledge of rationality, the relative likelihood of signals matters.

(Yet the data patterns and our probabilistic models do not suggest that the main departures

from BNE predictions can be attributed to statistical issues.) Third, although our game is

‘logically equivalent to’ the task of social inference, that does not mean that we have tested

responses to more naturalistic social inference. Perhaps people avoid neglecting redundancy

when seeing groups of people reveal their beliefs about best behavior rather than adding

4In standard experiments, when redundancy neglect arises, imitating is almost always empirically optimal.
The meta analysis of Weizsäcker (2010) confirms that success rates are higher—both with and without
controls for incentives—in situations where all previous players agree. (See Table 9 of that paper.)
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numbers. Or conversely, perhaps the experiment lays bare the logic of redundancy in a way

that no real-world situation would, so that the experimental results under-estimate real-

world redundancy neglect. As such, we view this experiment only as a first attempt to move

herding experiments towards more realistic observation structures.

Callender and Hörner (2009) describe an altogether different reason for which rational

people anti-imitate in the course of observational learning. In coarse-action environments

such as the canonical example in which people learn about which of two restaurants A and

B is better—choosing restaurants one at a time, and observing all past choices—Person t

who observes Person t − 1 choose A cannot necessarily infer the intensity of t − 1’s belief

in A. In this case, Person t − 2’s choice can provide additional information about Person

t − 1’s posteriors, which Person t wishes to adopt as her own priors. Given certain signal

structures, this can lead Person t to anti-imitate Person t − 2. When people either receive

no information or perfect information, the history (A,B) reveals that Player 2 has a fully

revealing B signal, whereas (B,B) does not; hence Player 3 is more apt to choose B after

the former history than the latter, which amounts to anti-imitation. Callender and Hörner

(2009) show that, given this information structure, when people cannot observe the order

of their predecessors’ moves, it can be optimal to follow the minority choice. Brunner and

Goeree (2012) present lab evidence that people eschew such anti-imitation. Because both of

our experimental treatments have fine action spaces, Callandar-Hörner-style anti-imitation

plays no part in our experiments: our work is orthogonal to that of Callender and Hörner

(2009) and Brunner and Goeree (2012).

We conclude the paper in Section 7, where we discuss further how our experiment fits

into other research that studies a broader array of herding environments. We reiterate that

the multi-file treatment is not designed to provide evidence that BNE fails in a consequential

way. (But fail it does. And so too does BRTNI.) Rather, our aim is to shift focus from very

special settings where BNE happens to be difficult to distinguish from intuitive imitative

behavior. Our data show that consideration of different and seemingly more realistic social-
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learning environments may lead to very different conclusions about BNE’s fit as well as about

the efficiency of social outcomes. We conclude Section 7 and the paper by discussing how

some of the traditional models of limited rationality proposed in the behavioral game theory

literature have difficulty accounting for our results.

2 Experimental Design

In each of the two experimental treatments, “single file” and “multi file”, twelve participants

interact. In each period t = 1, ..., T , one participant in the single-file treatment, and four

participants in the multi-file treatment, receive private information. T = 24 in the single-

file treatment, and T = 6 in the multi-file treatment, in order that each participant in

each treatment receive private information exactly twice. Each participant’s information is

generated by simulating 100 coin flips that are mutually independent as well as independent

of all other random draws in the experiment. The signal of participant i in period t, si,t,

comes from the difference between the number of heads and the number of tails of this

participant’s current set of coin flips. Upon receiving his or her signal, the participant makes

an “entry” ei,t, whose payoff

πi,t(ei,t, tari,t) = max{0, 24− 0.25× |ei,t − tari,t|}, (1)

depends upon the target tari,t, given by the sum of all signals in periods 1 through t−1 plus

the participant’s own signal. That is, in the single-file treatment, the target is simply the

sum of signals up to the current period. In the multi-file treatment, participant i’s target

is also the sum of signals up to the present period but excludes signals of the other three

participants moving concurrently.5 The payoff function penalizes deviations from the target

in a linear fashion up to the point at which a participant’s entry lies 96 away from the target,

5Including these three signals would not change the optimal strategy in the game.
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beyond which there is no punishment for further error.6 Upon completion of each period,

all participants receive an updated list of all previous entries. Figure 1 shows transcripts of

the decision screens for single file (a) and multi file (b), illustrating the similarity between

the two treatments.

This social-learning environment corresponds to the logical structure of three different

types of observational-learning settings. First, it approximates the standard model of two-

state social learning when the action space is the continuum, such that actions reveal poste-

riors.7 Expressed in log-likelihood-ratio terms, each player in such a model would optimally

add her private belief (the log likelihood ratio of her signal) to her predecessor’s posterior.

Second, it approximates a situation with a binary state about which each person receives a

signal corresponding to 100 coin flips, where each flip is extremely weakly correlated with

the true state. For example, flips might land heads 51% of the time in State 1 and 49% of the

time in State 2. With nearly equal beliefs over the likelihood of two states, Bayesians would

update in a manner that is approximately linear in the difference between heads and tails

realizations. In this sense, the experimental design also encapsulates the salient features of

social learning under weak private signals. The signal structure also lends itself to a third,

direct interpretation under which the value of some asset is literally the sum of the signals.8

This “wallet-game” signal structure has been tested in other experimental settings (as a

6Despite facing flat incentives for entries very far from target, participants whose guesses veer way off
target lack any obvious alternative strategy to simply entering their best guesses. Missing the target by
more than 96 is a substantial error: because the standard deviation of a player’s signal is 10, and that of
the target in period t is 2

√
25t in single-file and 2

√
(t− 1)100 + 25 in multi-file, both of which lie below 49

for each t, a participant who simply entered her signal would make a less substantial error more than 95%
of the time.

7Lee (1993) first analyzed that model.
8For example, consider a group of fliers learning about the average meal quality on an airline that uses

different catering companies; let M ⊂ R be the finite set of all company-branded meals. The quality of the
meals also depends upon the flight crew; let C ⊂ R be the finite set of all flight crews. For simplicity, meal
m ∈M prepared by crew c ∈ C has quality m+ c. Person i observes own experience mi + ci. Assume that
the cardinality of M ×C is large enough relative to the number of learners that all observations are distinct.
To estimate the average experience from eating the |M ×C| possible meals, Person i optimally averages her
own experience with any information available about other customers’ experiences. Let µ = E[m+ c] be the
expected quality of each type of meal; we can interpret mi + ci − µ, namely the “surprise” in i’s experience,
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(a) Single file 

You are Participant 5.  
Entries in this sequence – Periods 1 to 4: 

 
-8 

-10 
-6 
6 
 

Of your 100 coin flips in this period, 51 came up Heads and 49 came up Tails. 
 

Your entry in Period 5: _____ 
 

(b) Multi file 

 
 
 
 
 
 
 

Of your 100 coin flips in this period, 51 came up Heads and 49 came up Tails. 
 

    
You are in Group 2. 

Entries in this sequence – Period 1: 
 
 

-8  -10  -6  6 
 

  
                       

 
Your entry in Period 2: _____ 

Figure 1: Decision screens

as her signal. Then person 1 estimates the average experience to be

b1 =
m1 + c1 − µ
|M × C|

+ µ.

In single file, person 2 to combines that with his own experience to judge the average experience as

b2 =
|M × C|b1 +m2 + c2 − µ

|M × C|
= b1 +

1

|M × C|
(m2 + c2 − µ).

In general, for t ≥ 2,

bt = bt−1 +
1

|M × C|
(mt + ct − µ).
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form of common-values auctions (Avery and Kagel (1997)) and corresponds to situations in

which separate people observe the value of separate components of an asset—e.g., people

care about the sum of everyone’s money but only know the contents of their own wallets.

Since the best guess for the final sum coincides with the running total, this interpretation

works equally well for a target equal to the sum of all signals as it does for the sum of all

present and past signals.9 Finally, a potential attraction of using our simple arithmetic set-

up is that the underlying model speaks to a new set of applications—social learning games

where information about the target is fully revealed by the sequence of consecutive actions.

The 168 participants are students at University College London. Seated at visually

separated computer terminals, they first receive and read the experimental instructions and

complete a brief understanding test before beginning the computerized games.10 In seven of

the 14 sessions, participants play the single-file game, and the remaining seven sessions they

play the multi-file game. Each session includes 12 participants who play either single-file

or multi-file three times in a row, resulting in a total of 21 repetitions of each of the two

games. For each participant, one of her six choices (chosen at random after the experiment)

gets paid out. Because participants receive no feedback about the true value of the target

until after all decision-making, the experimental design does little to promote learning across

the three games per player and largely prevents us from addressing learning. Nevertheless,

Appendix A includes additional results that separate the data between the three games per

session.11

To test the instructions, and in order to ascertain whether participants could complete

the desired number of games in the ninety minutes allotted to the experiment, we initially

From person 2 onwards, this setting differs from our experimental setup only by the factor |M × C| on
signals, namely only in the sense that it concerns an average rather than a sum.

9In the context of social learning, Çelen and Kariv (2005) model the state in this way—as the sum of
all signals—yet employ a binary action space and payoff functions with the property that players care only
about the state’s sign rather than its magnitude.

10The experiment uses z-Tree (Fischbacher (2007)). The instructions are available in Online Appendix 2.
11The design choice of excluding feedback about the target was made in order to prevent contamination

by giving very heterogeneous feedback and experiences.
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piloted the experiment. The first pilot sessions revealed a lack of sufficient time for our

desired four games per treatment, but sufficient time for three games. We therefore changed

our experiment to include only three games, and made some minor alterations to instructions,

post-experimental questionnaire and the payment procedure. We then ran one more pilot

on each treatment, after which we changed no other facets of the experiment. The data of

the pilot sessions are not, and were not meant to be, included in the data analysis.

Our primary hypothesis was that participants in both experiments would neglect re-

dundancy by explicitly overcounting early entries and thereby implicitly overcounting early

signals. Despite our lack of a formal specification of redundancy neglect more general than

BRTNI when designing the experiments, we hypothesized that participants’ entries would

drift above or below their targets in a manner predictable from first-period signals. BRTNI

predicts such “momentum”, as do many other types of overcounting. Specifically, we hy-

pothesized that positive (negative) first-period signals would be predictive of the event that

later entries lie above (below) their targets. This would violate BNE and other rational-

expectation predictions. In addition, we hypothesized that participants in the multi-file

treatment would not anti-imitate as per BNE, leading them to implicitly overcount early

signals.12 Because BNE in the single-file game lacks anti-imitation, we anticipated that de-

viations from BNE would be stronger in the multi-file game. If so, then players would earn

especially meager payoffs in the multi-file treatment.

Because extreme redundancy neglect might generate entries so large that they could not

plausibly be near the target, we expected that at least some participants would recognize

that something was amiss and employ some form of correcting behavior. In addition, BRTNI

players would understand that entries with magnitudes greatly in excess of 100 could not

possibly reflect private signals alone. For neither case did we formulate hypotheses on how

12The precise BNE prediction of a player in period t of multi-file is to add one’s own signal to the following
sum (if applicable): once the sum of t− 1 entries minus three times the sum of t− 2 entries plus nine times
the sum of t− 3 entries minus 27 times the sum of t− 4 entries plus 81 times the sum of t− 5 entries.
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participants would adjust their behavior. Rather than to study such mechanisms, our aim

was to explore the presence of redundancy neglect, in a setting designed to be inhospitable to

it. Our statistical analysis thus sticks closely to the a priori formulated empirical questions.

3 Descriptive Analysis of the Single-File Treatment

Figures 2 and 3 show the evolution of entries across periods in the single-file game through

the mean and median, respectively, of the absolute values of entries and targets across the

21 single-file games.13

Figure 2: Single-file mean absolute entries and targets

Figure 2 shows that after a few periods during which the mean entry nearly coincides

with the mean target, a large disparity emerges before swiftly vanishing. The underlying

fluctuation of entries derives solely from one game, Game 34. In it, several participants

13By using absolute values of each entry, the figures treat positive and negative entries symmetrically. One
may worry about a potential bias towards making positive-valued entries, but such a bias cannot be discerned
in our data. In the single-file treatment, the random signals happen to be strictly negative (49%) more often
than strictly positive (43%), leading to an overall tendency towards negative entries (56% negative, versus
41% positive). The asymmetry in signals is particularly strong in t = 1, where 15 out of 21 (71%) of signals
happen to be strictly negative.
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Figure 3: Single-file median absolute entries and targets

(those in periods 3, 4, 7, 9, 10) act like BRTNI by adding up all previous entries, running

entries up above 1800 before subsequent players make corrections by choosing entries near

zero. Although this episode strongly affects the mean across all 21 games, Game 34 is

unusual: Figure 3 shows that across games the median entry closely tracks the median

target. Overall, mean and median entries in the single-file game depart only mildly from

Nebi play (i.e., from best responding to BNE play from everyone else). The tables in Online

Appendix 1 provide a full account of all raw data in each game, showing that in three of 21

games all entries nearly coincide with their targets.14

But, as Game 34 indicates, there are some systematic deviations from optimal behavior,

including redundancy neglect. In Table 1, we organize the individual entries by classifying

them according to their exact consistency with the Level-k family of models. This family

was developed for games of complete information by Stahl and Wilson (1994) and Nagel

(1995) and subsequently applied to games of incomplete information (e.g., Crawford and

Iriberri (2007)). We follow previous applications to social learning games (e.g. Kübler and

14In one game, all entries match targets exactly; in another, the same would be true but for someone who
flips the sign of his or her private signal; in the third game, someone appears to have made the mildest of
arithmetic mistakes (mis-summing −36 and −8 to −46).
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Weizsäcker (2004)) by maintaining the assumption that Level-0 play randomizes uniformly

over available actions, independent of private signal. In our games, several members of this

family correspond to natural prototypical behaviors: “fully cursed” behavior is equivalent to

Level 1 (following only one’s own signal); BRTNI (full redundancy neglect) coincides with

Level 2; best responding to BRTNI/Level 2 is Level 3; and Nebi in period t agrees with Level

k for k > t − 1. For each model, the table reports the number of decisions consistent with

the model’s specified strategy.15

15Because participants move twice per game, in the second half of the game they may treat their own past
actions differently than those of other players. Due to the subtlety of this asymmetry, we adopt expansive
definitions of cursed, BRTNI, Level-3 and Nebi play, coding an action as consistent with Level-k regardless
of whether players treat their past actions differently than those of other players. Likewise, we code an entry
as consistent with Level-k if the player best responds to the beliefs that others play a Level-(k− 1) strategy
and that these others treat their own prior actions the same as they would treat entries by other players.
Altogether, this necessitates allowing for two different versions of fully cursed and Nebi strategies (accounting
for own previous signal versus not), three different versions of BRTNI (ignoring multiple entries per player,
accounting only for own previous entries, and accounting for own and others’ previous entries) and four
different versions of Level-3 (ignoring multiple entries per player, accounting only for own previous entries,
accounting for own and others’ previous entries but ignoring that others account for their predecessors’
previous entries, and full accounting for all previous entries). In all cases the simplest version of the Level-k
model has the highest consistency rate; allowing for the more sophisticated versions makes only a minor
difference, as Table 11 (and Table 16 for multi file) illustrates.
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Table 1: Single-file entries consistent with different behavioral models

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 21 21 21 21 0

t=2 1 18 18 18 2

t=3 1 6 14 14 2

t=4 1 5 0 15 2

t=5 1 2 0 17 1

t=6 2 1 1 15 3

t=7 1 1 0 17 2

t=8 1 1 0 17 3

t=9 1 2 0 18 1

t=10 0 1 0 14 6

t=11 3 1 0 11 6

t=12 1 0 0 14 6

t=13 4 0 0 16 3

t=14 4 1 0 14 5

t=15 0 0 0 15 6

t=16 3 0 0 16 3

t=17 1 1 0 20 0

t=18 2 0 0 15 5

t=19 1 1 0 19 1

t=20 0 0 0 18 3

t=21 0 0 0 12 9

t=22 1 0 0 15 6

t=23 3 0 0 17 4

t=24 2 2 0 17 2

Total in t ≥ 3 33 25 15 246 79

Total in t ≥ 4 32 19 1 332 77

Total 55 64 54 385 81
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In each of the first three periods, whenever two or more models make the same prediction,

Table 1 codes participants as following more than one type. From period 4 onwards, however,

the different models are identified by different predictions except in a small number of cases

(20 of 441, or 4.5%, of classifications) where serendipity produces signals and previous entries

that align just so. The behavior of 16 of the 81 participants classified as “NA” can be

attributed to one of the models in the table by allowing for the possibility that the participant

inadvertently flips the sign of his or her private signal, the model’s predicted action minus

the signal (namely his or her inference from others according to the model), or both.

A striking feature of the table is that the large majority of entries is consistent with Nebi

play, i.e. näıve BNE play, or equivalently with a Level-k model where k > t − 1. Of the

504 entries in our data set, 385 are consistent with this prediction, and the proportion is

constant in t even in the latter half of games. Such sophistication stands in stark contrast

to all other estimates of Level k of which we are aware.16

The same result appears if we consider jointly the six choices that a single participant

makes. Appendix Table 15 summarizes the individual participants’ decision patterns, show-

ing that 57 of the 84 participants playing the single-file game (68%) choose the Nebi action

in at least five out of six opportunities. No other model (among Level 1, Level 2/BRTNI or

Level 3) has even a single such adherent. A separate analysis also finds that few participants

learn to play higher-level models over the course of the experiment’s three games. Only three

of 84 participants make both entries consistent with Level m in a first game before making

both entries consistent with Level n, for n > m, in a later game.17

The single-file game appears to be so simple that participants understand the logic of

BNE—they simply add their own signal to the previous period’s entry—and can apply it even

16Nebi’s high hit rate reveals that the vast majority of participants do not round their entries to multiples
of 10, or similar. To the extent that a minority of participants do round, we would under-estimate Nebi’s
consistency with the data.

17No participant does the opposite. In multi file, the numbers are the same: three participants consistently
show a higher level later in the experiment than earlier, and no participant shows the reverse.
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in late periods in the game. This behavioral rule does not require anti-imitation and, in the

single-file game, is optimal if and only if everyone else follows it. Because not everyone does

adhere to Nebi play, the Nebi strategy is not empirically optimal for late movers. Indeed, in

periods t > 3, while 75% follow their Nebi strategy, only 17% hit their target—because entries

have previously departed from Nebi play. While playing Nebi may be arithmetically simple,

best-responding to predecessors who play differently presents greater challenges. Level 3, in

contrast, has a very low hit rate, in periods where it does not coincide with Level 2/BRTNI

and/or Nebi play.

Table 2 also shows that BRTNI’s precise prediction of strong redundancy neglect at-

tracts support only in the earlier rounds, and only in a relatively small proportion of cases.

Moreover, Appendix A shows that BRTNI’s hit rate tends to decrease in the participants’

experience of playing the game.

This, however, still leaves open the possibility that other forms of redundancy neglect

occur—as we discussed above, a large set of behaviors would lead to overcounting. We

return to the issue of overcounting in Section 5 and here merely document that BRTNI’s

point prediction often predicts the direction of participants’ departure from BNE: of the 377

entries off target, 270 (72%) err in the direction of BRTNI.18 Figure 19 of Appendix A shows

the distribution of entries relative to their targets.

Altogether, the evidence in the single-file game suggests that most participants employ

the Nebi strategy. They are able to use the actions of others to their own benefit. Average

earnings are GBP 18.25, whereas simply relying on one’s own signal(s) would pay GBP

16.99 on average. Nevertheless, the presence of a small minority of participants who do

not follow BNE—and tend to neglect redundancy—drags overall behavior away from the

target. Because errors by a minority have long-lived effects, people moving later in the game

18As described in Footnote 15, we frequently report (as we do here) a simplified variant of BRTNI that
does not fully match BRTNI’s proper definition, which would have her assume that any predecessors’ second
move is the sum of that predecessor’s two signals, rather than simply her second signal. It matters little for
our analysis here or elsewhere whether we use the full or simplified definition.
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benefit less from social learning. If the games were even longer, this effect would increase.

For illustration, consider the following simulation. Of the 305 decisions classified as cursed,

BRTNI and Nebi for periods t ≥ 3 in Table 1, 8% were cursed, 11% were BRTNI and 81%

Nebi. Assuming that each player behaves as one of these three types, with likelihoods given

by the classification, we simulate a hypothetical 48-period game, in which each player moves

four times, 100, 000 times. The average and median simulated payoffs from the game’s last

entry (in t = 48) are 8.26 and 3.50. A player in t = 48 who instead ignored the other players

and played the sum of his four private signals would have average and median simulated

payoffs of 11.87 and 13.

Finally, we ask what would be the ex-post optimal behavior, given other’s choices. Under

the maintained hypothesis that participants use their own signals correctly, we can decom-

pose the entry ei,t of a participant i with signal si,t into ei,t = si,t + (ei,t − si,t); the term

ei,t − si,t measures what the participant infers about the target from predecessors. We con-

sider a class of alternative rules e′i,t(γ) := si,t+γ(ei,t−si,t), where γ ≥ 0 represents a shading

factor, and identify the value of γ that maximizes the participant’s payoff. A value of γ < 1

indicates that the participant overshoots the target by over-inferring from predecessors; a

value of γ > 1 indicates that the participant undershoots the target by under-inferring from

predecessors. For all participants, we find that γ = 0.69 maximizes payoffs: the average par-

ticipant over-infers, and would have earned GBP 18.51 (instead of GBP 18.25) by shading

her inference by 31%. Yet this disguises very substantial heterogeneity between those who

exhibit Nebi play and those who do not. For non-Nebi players, we find that γ = 0.28 would

have earned GBP 17.16 (instead of GBP 15.12). For Nebi players, γ = 0.90 would have

earned them GBP 19.33 (instead of GBP 19.28).
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4 Descriptive Analysis of the Multi-File Treatment

Figures 4 and 5 are the multi-file analogs to Figures 2 and 3, respectively. They depict the

mean and median entries relative to targets across periods. The median in period t of Figure

5 corresponds to the median across the 21 games of the mean of the four period-t entries,

while the mean in period t of Figure 4 represents the mean across the 21 games of the mean

of the four period-t entries.

Figure 4: Multi-file mean absolute entries and targets

Players in the multi-file games deviate much more from their targets than players in

the single-file games, and later players do not correct earlier players’ errors. Like in most

single-file games, in most multi-file games the (absolute) target lies between 10 and 70 in

the final period. Yet participants make entries whose absolute values are higher by an order

of magnitude. The average absolute t = 6 entry surpasses 600 and this is not driven by

outliers: in a majority of games, the final-period average exceeds 500. The deviations from

target start accumulating in t = 3, the first period in which redundancy neglect can have an

impact, and by t = 5 most games have mean entries that outstrip their targets by tenfold.

Although on average participants make choices that are too extreme, in several games
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Figure 5: Multi-file median absolute entries and targets

a subset of them appear to recognize that entries are too extreme and take corrective ac-

tion. Typically, however, they do not influence the crowd’s belief enough to prevent later

participants from making even more extreme entries. Table 2 gives an example in the form

of Game 17.19 It shows for each period the sum of previous signals (
∑4

i=1

∑t−1
t′=1 si,t′) as well

as each player’s signal si,t (in brackets)—summing the two gives the target—as well as the

player’s entry.

19We selected this game as typical in its variability of behavior; Online Appendix 1 provides a full account
of the data.
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Table 2: Signals and entries of Game 17

∑4
i=1

∑t−1
t′=1 si,t′ s1,t e1,t s2,t e2,t s3,t e3,t s4,t e4,t

t=1 [0] [-8] -8 [-10] -10 [-6] -6 [6] 6

t=2 [-18] [-2] -20 [-6] -36 [16] 2 [0] -18

t=3 [-10] [-4] -24 [-8] -98 [6] -12 [-6] -96

t=4 [-22] [8] -24 [-8] -150 [-6] -34 [6] -26

t=5 [-22] [4] -16 [-2] -40 [6] -584 [2] -534

t=6 [-12] [-18] -34 [-16] -1654 [10] -2046 [-4] -1732

Entries in the first two periods equal or approximate targets, as most reasonable models

would predict. From period 3 onwards, however, Nebi play prescribes anti-imitation: the

players should realize that the negative entries in t = 2 share a common source in the form of

t = 1 entries. Accounting for this redundancy, while at the same time gleaning information

about t = 2 signals from t = 2 play, requires t = 3 players to imitate entries in t = 2 and

anti-imitate those in t = 1. Yet two of the four players in t = 3 of Game 17 do not follow

this logic and report entries consistent with BRTNI: they simply add their signal to the sum

of previous entries. In t = 4, three of the four players behave in ways more moderate than

BRTNI, and one player chooses an extreme entry of −150, an instance of strong redundancy

neglect. In t = 5 and t = 6, several entries are even more extreme. One of them, the

entry of −2046 in t = 6, is actually Nebi play from a participant who, while rather smart,

makes the game’s most severe prediction error! Overall, the example shows that in spite of

some players’ attempts to moderate behavior along the way, the significant number of strong

redundancy neglecters propagates extreme beliefs.20

20The extreme behavior of this and many other participants raises the questions as to whether subjects
understand the target’s ex-ante distribution, which is concentrated around zero, and whether such under-
standing helps to avoid extreme beliefs. In our debriefing questionnaire, we asked the participants the
following “If a coin is flipped 2500 times, what is the probability that (# Heads − # Tails) lies between -100
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For comparison with single file, the following table reports the consistency of the data

with the various members of the Level-k family of models. It too indicates that these

models fit the data very differently in the multi-file treatment than they do in the single-file

treatment.

Table 3: Multi-file entries consistent with different behavioral models

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 81 81 81 81 3

t=2 3 67 67 67 14

t=3 3 18 29 29 37

t=4 4 22 0 16 44

t=5 1 29 0 6 49

t=6 1 8 0 2 73

Total in t ≥ 3 9 77 29 53 203

Total in t ≥ 4 6 59 0 24 166

Total 93 225 177 201 220

Table 3 shows that Nebi fits the data well in t = 1 and t = 2, periods in which its

prediction coincides with BRTNI and Level 3, and even in t = 3, where it makes a different

prediction than BRTNI. Overall, 63% of entries in the first three periods hit their targets.

In periods 4, 5 and 6, the success rate falls to 6%. For these periods, Nebi involves intricate

imitation as well as anti-imitation. The fact that 24
252
≈ 10% of decisions in the second half

of the experiment match Nebi demonstrates a high degree of sophistication amongst some

participants. However, in each of t = 4, 5, 6, BRTNI fits a higher proportion of entries than

Nebi or the other models.21 As Appendix A Table 20 shows, the same pattern appears if we

and 100 for these coin flips?” Surprisingly, the accuracy of their answers does not predict their earnings.
The correlations are −0.05 (p-value 0.63, Pearson product-moment test) for single file and −0.16 (p-value
0.18) for multi file.

21Of the 220 unexplained observations, 11 can be explained by enriching one of the proposed models by
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consider all six choices of a single subject. Only four participants make five or six choices

consistent with Nebi, whereas 13 participants make five or six choices consistent with BRTNI.

Figure 20 in the Appendix depicts the deviations from target for all periods. Just like in

the single-file treatment, BRTNI predicts the systematic direction of the deviations: 78% of

deviations lie on BRTNI’s side of zero.

Also similar to the single-file treatment, BRTNI behavior diminishes with experience in

multi file; see Tables 17 to 19 in Appendix A.22 But regardless of whether participants follow

BRTNI or another form of redundancy neglect, they make far too many extreme entries,

which Online Appendix 1 documents for nearly all games.

Altogether, the multi-file treatment induces strong herding that leads participants severely

astray. 44% of the data are consistent with BRTNI, and more are consistent with a general

propensity to neglect redundancy, which leads to increasingly extreme and off-target pre-

dictions. Many participants, especially late movers, estimate the targets to lie in extremely

unlikely regions. Such misestimation comes at a price: participants in the last three periods

earn an average of GBP 8.90, whereas the simple strategy of reporting one’s own signal

would have earned GBP 16.60. Across all periods in the multi-file treatment, participants

earn an average of GBP 14.93, whereas reporting their signals would have earned them GBP

18.32. Not only do participants learn sub-optimally, but they mislearn so acutely that they

would be better off without the possibility of learning! To our knowledge, this is the first

experiment to document that such an effect occurs on average across the entire population

of players.

Finally, Figure 6 illustrates how early signals come to excessively influence later play by

establishing a relationship between the sign of t = 1 signals and later deviations from target.

It depicts the average entries and targets (not their absolute values) in multi-file games whose

allowing participants to flip signs of their private signals or flip the signs of what they infer from their
predecessors, or both.

22We especially note that in the third game of each session, Nebi play, which includes anti-imitation, occurs
more frequently than the simpler BRTNI play.
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first four signals sum to positive values versus the average entries and targets in multi-file

games whose first four signals sum to negative values. Because the signals are i.i.d., the

sign of the first four signals does not predict later signals, and, hence, the targets (dotted

line) remain stable on average after t = 1. Participants’ entries, however, differ dramatically

depending upon the sign of the sum of first-period signals. Early positive signals generate

positive momentum whereby later entries tend to exceed their targets, increasingly so over

the course of the game. Figure 21 in Appendix A gives an analogous picture for single file

that shows no significant momentum.

Figure 6: Average entry and target in multi file, separated out by the sign of the sum of the
game’s first-period signals

Overall, whereas entries approximate targets fairly well in the single-file treatment whose

observation structure is standard in the literature, we find much stronger evidence for redun-

dancy neglect in the multi-file treatment. This discrepancy suggests that our experimental

setup per se does not induce strong deviations from target; rather, only in the multi-file

treatment in which sequential rationality predicts anti-imitation do participants strongly

and reliably fail at rational inference.
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5 Regression Analysis

In this section, we present linear regressions that test for both the presence of over-counting

and the lack of anti-imitation. These tests were anticipated in the design of our experiment:

redundancy neglect predicts that entries react too strongly to earlier signals (over-counting)

and that regression coefficients for certain earlier entries are not sufficiently negative (lack

of anti-imitation). The analysis first focusses on the multi-file treatment, before turning to

the single-file treatment for comparison.

We first investigate over-counting in multi file, describing the connection between early

signals and later entries. This parallels Figure 6’s nonparametric description. We regress

the participants’ period-t entries, ei,t, on the period-t signals they receive, si,t, as well as

on the sum of all signals in every prior period t′, st′ =
∑4

i=1 si,t′ . Nebi predicts that all

coefficients equal one, since all signals are correctly accounted for in equilibrium.23 BRTNI

makes the same predictions for t = 1 and t = 2. For periods t ≥ 3, BRNTI makes two

distinct qualitative predictions.24 First, it predicts that for each i and t′ < t − 1, the

estimated effect of st′ on ei,t should exceed one. Second, it predicts that for each i and

t′ < t, the effect of st′ on ei,t+1 should exceed the effect of st′ on ei,t. Moreover, Eyster

and Rabin (2014) show that any rule whereby players neglect redundancy makes the first

prediction above. In addition, any rule like BRTNI whereby players correctly weight their

immediate predecessors, and fail to anti-imitate, makes the second prediction. Since signals

are exogenous and mutually independent in our design, these hypotheses can be well tested

with a regression; all coefficients have causal interpretations. Table 4 presents the regression

results, where player indexes are omitted from the dependent variables et for conciseness

23Because Nebi/BNE also predicts that a constant regressor has a zero coefficient, we omit the constant.
Empirically, the inclusion of a constant regressor leaves the results essentially unchanged.

24Precisely, BRTNI predicts that for each i and t, ei,t = si,t +
∑
t′<t et′ , where et′ =

∑4
i=1 ei,t′ . This

prediction implies that ei,t = si,t +
∑
t′<t 5t−1−t

′
st′ , so that third-period entries correctly weight s2 but

quintuple-count s1; fourth-period entries correctly weight s3, quintuple-count s2, and overcount s1 twenty-
five fold; etc.
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(similarly in the subsequent tables).

Table 4: Multi-file regressions of period-t entries on current and past signals.
(Standard errors in parentheses are clustered by session.)

e1 e2 e3 e4 e5 e6

s1 - 1.025 (0.056) 2.983 (0.426) 3.073 (0.832) 13.513 (3.113) 19.609 (5.447)

s2 - - 0.999 (0.231) 3.951 (1.307) 9.112 (2.459) 10.101 (10.426)

s3 - - - 1.066 (0.914) 6.711 (3.912) 10.362 (7.240)

s4 - - - - - 4.786 (3.750) -1.553 (9.511)

s5 - - - - - 3.683 (5.912)

st 0.912 (.070) 1.067 (.106) 1.359 (0.812) -1.555 (2.358) -0.702 (7.238) 1.195 (15.480)

R2 0.83 0.90 0.69 0.25 0.44 0.19

obs. 84 84 84 84 84 84

For t′ = 1, 2, signals in t′ affect the entries in t′ + 1 with weights of approximately one,

as predicted by BNE and BRTNI. This suggests that on average, players in early rounds

correctly imitate their immediate predecessors. However, these same signals attract far larger

coefficients in periods t′ + 2, t′ + 3, . . . (the smallest point estimate being 3.0 and the largest

19.6). In addition, along each of the first three rows in the table, the estimated coefficients

increase monotonically, as predicted by BRTNI and other redundancy-neglect models. The

fact that participants implicitly over-count early signals so dramatically illustrates how far

behavior deviates from Nebi. Late actions implicitly weight the early signals very heavily,

consistent with a substantial degree of redundancy neglect. For t′ = 3, 4, the regressions’

large standard errors render all of the estimated coefficients statistically insignificant. Indeed,

in these periods, even the participants’ own signals do not have significant effects on their

actions.

We now turn to tests of anti-imitation. When players move multi-file, BNE calls for

them to anti-imitate some of their predecessors in order to avoid inefficiently over-counting

early signals. We regress participants’ period-t entries ei,t on their period-t signals si,t and
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on lagged entries et′ , with t′ < t and et′ =
∑4

i=1 ei,t′ . BNE/Nebi predicts a coefficient on

si,t equal to one and coefficients on et′ that oscillate and diverge, with predicted levels of

1,−3, 9,−27, 81 for t′ = t−1, t−2, t−3, t−4, t−5, respectively. BRTNI predicts that every

entry gets the same coefficient of 1. Other rules embedding different forms of redundancy

neglect predict that all of the coefficients are non-negative, and that their sum exceeds one.

Table 5 shows the regression results.

Table 5: Multi-file regressions of period-t entries on current signals and past entries.
(Standard errors in parentheses are clustered by session.)

e1 e2 e3 e4 e5 e6

e1 - 0.925 (0.041) 0.088 (1.057) - 3.908 (7.569) -11.623 (8.605) 38.315 (16.924)

e2 - - 0.700 (0.300) 2.037 (1.918) 3.102 (2.214) -12.636 (4.502)

e3 - - - -0.011 (.307) 0.456 (.403) 0.928 (.857)

e4 - - - - 0.519 (.149) 0.299 (.339)

e5 - - - - - 0.254 (.122)

st 0.912 (.070) 0.956 (.104) 1.245 (0.663) -0.611 (2.515) -1.277 (3.817) -1.460 (13.209)

R2 0.83 0.95 0.70 0.24 0.54 0.28

obs 84 84 84 84 84 84

The coefficients differ from the anti-imitation pattern predicted by BNE/Nebi play: of

the six predicted negative coefficients, four have estimated positive signs. Altogether, most

coefficients in the table are estimated to be insignificantly different from zero, and most

differ significantly from Nebi’s prediction.25 Anti-imitation should appear most simply in

the third period, where BNE/Nebi call for it for first time. Given behavior in t = 1 and

t = 2, participants in t = 3 should anti-imitate the actions in t = 1. However, the coefficient

of e1 in the regression of e3 is close to zero and differs significantly from the Nebi-predicted

value of −3.

25Note, however, that the property of redundancy-neglect models that the sum of previous entries’ coeffi-
cients exceeds one is unconfirmed—directed null hypotheses in either direction cannot be rejected.
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Overall, the regressions of Table 5 confirm that the central tendency of the data patterns

does not include anti-imitation. This can also be tested via likelihood-ratio test of the joint

hypothesis that all coefficients are non-negative. In each of the six regressions of Table 5, the

null hypothesis that all coefficients are non-negative cannot be rejected at any reasonable

significance level, with p-values of 1.00, 1.00, 1.00, 0.82, 0.80 and 0.72, respectively.

Rather than confirm BNE/Nebi’s prediction for multi file, the estimated decision weights

of Table 5 are somewhat more reminiscent of BNE/Nebi’s prediction for the single-file treat-

ment, in which all weights of previous entries should be non-negative. To explore whether

behavior in both treatments shows the same pattern, we turn to analogous regressions for

single file. To readily compare coefficients with those of the multi-file treatment, we group

periods t = 1, . . . , 4 of single file into “super-period” t̃ = 1, periods t = 5, . . . , 8 into super-

period t̃ = 2, and so forth. This coarse time structure suppresses the sequencing of moves

within super-periods in order to facilitate comparison of the coefficients to those of Table 4:

we regress the single-file participants’ super-period-t̃ entries, ei,t̃, on their period-t signals,

si,t, as well as on the sum of all signals in every prior super-period t̃′, st̃′ =
∑4

i=1 si,t̃′ . Table

6 presents the regression results.

Table 6: Single-file regressions of super-period-t̃ entries on current and past signals.
(Standard errors in parentheses are clustered by session.)

e1̃ e2̃ e3̃ e4̃ e5̃ e6̃

s1̃ - 1.302 (0.697) 5.751 (4.849) 1.672 (1.027) 1.664 (.701) 0.680 (1.897)

s2̃ - - 1.036 (0.875) 1.211 (1.166) 1.376 (.956) -1.942 (.911)

s3̃ - - - 1.502 (.558) 1.584 (.289) 0.017 (1.112)

s4̃ - - - - 0.496 (.477) 2.553 (.589)

s5̃ - - - - - -0.382 (1.145)

st 0.782 (.155) 1.380 (.437) 0.017 (2.933) 0.500 (.569) 1.228 (.388) -1.337 (2.358)

R2 0.18 0.25 0.16 0.41 0.64 0.20

obs. 84 84 84 84 84 84

BNE/Nebi play predicts that all coefficients equal one, since all signals are correctly
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accounted for in later periods. Despite most point estimates exceeding one, only three of the

15 coefficients that describe the influence of past signals differ statistically significantly from

one (and one of these three has the opposite sign). This contrasts starkly with the results

from multi file. In particular, the regressions provide no indication that early signals exert

increasingly strong influence on later and later actions.

One may speculate that the reaction to earlier entries, not signals, is comparable between

the two treatments. Appendix A Table 21 refutes this and shows significant differences from

Table 5, which reports many coefficients much further from zero.26

Overall, the comparison of regressions for single file and multi file shows strong dis-

similarities between the treatments. An important caveat for this observation is that the

theoretically predicted coefficients (of BNE, BRNTI, and most other reasonable models) also

differ between treatments. In the next section, we turn to a structural model of probabilis-

tic behavior that implements the respective rules of the two games. There, estimates will

indicate that even the structural patterns of behavior differ between the treatments.

6 Structural Model Estimation

This section complements the previous analyses by estimating a structural model of decision-

making that encompasses BRTNI, Nebi and other behaviors; it also generalizes both Quantal-

Response Equilibrium (QRE) (McKelvey and Palfrey 1995) and Level k. As in Kübler and

Weizsäcker (2004), players noisily best respond to their beliefs, and regard other players as

making imprecise choices too. In particular, player j “better responds” to her beliefs about

her target by applying a probabilistic best-response function characterized by the precision

parameter λ1. A higher value of λ1 indicates greater precision; the limiting case of λ1 =∞

corresponds to the true best response to player j’s beliefs. Player j’s probabilistic beliefs

26We include the table for completeness but relegate it to Appendix A because the BNE/Nebi and BRTNI
predictions do not harmonize with the super-period presentation.
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about her target depend naturally upon her beliefs about her predecessors’ behavior. We

assume that player j believes that each prior mover i also acts probabilistically, but with a

potentially different precision λ2. (The superscripts refer to the level of reasoning.) Player

j’s beliefs also depend upon her beliefs about i’s beliefs about his predecessors, etc. We

assume that j thinks i thinks that his predecessors act with precision λ3, and so on, for all

levels of reasoning.

The following subsection describes the model’s precise updating process where, like in

Kübler and Weizsäcker (2004), the noise in best responses (λ1, λ2, . . .) can result from lo-

gistic disturbances to players’ utilities (or their beliefs about other players’ disturbances,

beliefs about other players’ beliefs about still other players’ disturbances, etc.). For reasons

of complexity, we cannot directly estimate this model in the context of our experiment.

However, Subsection 6.2 describes an estimable approximation that uses coarser action and

signal grids.27 Subsection 6.3 describes a different variant of the model, where we make

a normality assumption on the probabilistic choice itself. Both model estimations largely

confirm the conclusions drawn from the analysis of the previous sections.

6.1 The model

Let Fi,t(x;hi,t, si,t, (λ
1, λ2, . . .)) denote the probabilistic belief of player i in period t that

her target tari,t does not exceed x, following the history hi,t = (el,τ )l,τ of observed entries,

the player’s private signal si,t, and for a given vector of precision parameters (λ1, λ2, ...).

The logistic best response to the beliefs Fi,t, characterized by precision λ, is a probability

distribution that assigns entry ei,t the probability

σ(ei,t;Fi,t, λ) =
exp(λ(

∫
πi,t(ei,t, tari,t)dFi,t)

Σe exp(λ(
∫
πi,t(e, tari,t)dFi,t)

, (2)

27We are indebted to Tom Palfrey for suggesting this approach.
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where the payoff of an entry for a given target is given by (1), and the denominator sums

over all available entries e. We assume that all players’ choices have common precision λ1.

Any player i acting in t = 1 is assumed to have correct beliefs about her target, namely

Fi,1(x; si,1, (λ
1, λ2, ...)) = 1x≥si,1 for any (λ1, λ2, . . .). The player applies σ(·;Fi,1, λ1) to her

belief and thus chooses an entry equal to her signal (and, hence, target) with greatest prob-

ability, and increasingly distant entries with lower yet positive probabilities. Subsequent

players’ beliefs depend on the history and on (λ2, λ3, ...), as players attempt to back out

their predecessors’ signals.28 The main assumption of our analysis is that j reasons about

her predecessors’ decision-making through the truncated precision vector (λ2, λ3, ...) as de-

scribed above.

For a simple example of the approach, consider player j acting in t = 2 of the single-

file game. Player j, firstly, knows that player i received a private signal that he interprets

correctly, and, secondly, believes that i better responds to his beliefs with precision λ2.

Player j’s beliefs about her own target are thus:

Fj,2(x;hj,2, (λ
1, λ2, ...)) = Pr

[
si,1 ≤ x− sj,2|ei,1, (λ1, λ2, ...)

]

=

∫
s̃i,1≤x−sj,2

σ(ei,1; 1x≥s̃i,1 , λ
2)φ(s̃i,1)∫

s̃
′
i,1≤100

σ(ei,1; 1x≥s̃′i,1
, λ2)φ(s̃

′
i,1)ds̃

′
i,1

ds̃i,1,

where φ(ŝ) denotes the probability of an individual signal taking on value ŝ.

Likewise, for general t and s < t, j’s beliefs about the probability that i’s signal si,τ lies

28For simplicity, we ignore the fact that players choose twice and therefore have different information
about an earlier signal. See Table 11 and Table 16 for evidence that our participants ignore this, too.
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below some value y, conditional upon i’s entry ei,τ as well as the rest of hj,t, is

Gj,t
i,τ (y;hj,t, (λ

1, λ2, ...)) = Pr
[
si,τ ≤ y|hj,t, (λ1, λ2, ...)

]

=

∫
s̃i,τ≤y

σ(ei,τ ;Fi,τ (x, s̃i,τ , (λ
2, λ3, ...)), λ2)φ(s̃i,τ )∫

s̃
′
i,τ≤100

σ(ei,τ ;Fi,τ (x, s̃
′
i,τ , (λ

2, λ3, ...)), λ2)φ(s̃
′
i,τ )ds̃

′
i,τ

ds̃i,τ ,

where the hidden information s̃i,τ and s̃
′
i,τ represent randomness from j’s perspective. Using

Gj,t
i,τ (·), player j’s belief about her own target Fj,t can be calculated recursively.29 For each

level of reasoning about other players, one more element of the precision vector is truncated

to determine higher-order beliefs.

Notice that in the construction of Fj,t, players from t = 3 onward consider others’ entries

multiple times and with differently truncated precision vectors. A player acting in period

3, for instance, may interpret the entry ei,1 in a different way than he believes players in

period 2 do. The model thus allows for redundancy neglect when λ3 is relatively low, and

similarly for many other deviations from rational expectations about others’ play. BRTNI

corresponds to the parameter values λ1 = λ2 =∞ and λ3 = λ4 = . . . = 0.

6.2 Approximation on a coarse grid

The model presented in the previous subsection defies a one-to-one implementation due to

the enormous number of possible targets and histories, which renders the calculation of all

relevant beliefs and likelihoods infeasible. To estimate our limited-depth-of-reasoning model,

we simplify the game by constraining all signals, targets and entries to lie on a much smaller

29Letting Ij,t = {(i, s) : s < t} be the set of player-entry pairs prior to (j, t), the belief Fj,t is the |Ij,t|-fold

convolution of the random variables with distributions {Gj,ti,s(·)}(i,s)∈Ij,t . These variables are independent,
conditional on hj,t: for players k, i, j acting in periods τ < s < t, respectively, knowledge of player k’s

signal does not affect the distribution Gj,ti,s because Gj,ti,s conditions on k’s entry (making knowledge of sk,τ

superfluous in the construction of Gj,ti,s), and conversely, knowledge of i’s signal does not affect the distribution

Gj,tk,τ because i’s entry does not inform it.
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grid of possible values. The central simplifying assumption is that each participant’s private

information derives from only two coin flips, rather than from the 100 in the experiment.

In our “grid game”, we take a player’s signal to be the sum of two independent and

equiprobable random variables that can take on one of two values {−δ, δ}. The level of

δ is fixed at
√

50 ≈ 7.07, chosen to equate the target’s variance in the grid game to that

in the original game.30 Just as the original game, the grid game becomes richer as more

information gets aggregated. By analogy to the coarse signal structure, we force the players’

targets and entries to belong to Vt, whose values are integer multiples of 2δ with minima

and maxima given by the smallest and largest possible targets in the period. For example,

in single file, V1 = {−2δ, 0, 2δ} and V2 = {−4δ,−2δ, 0, 2δ, 4δ}; in multi file, V1 = {−2δ, 0, 2δ}

and V2 = {−10δ,−8δ, ..., 8δ, 10δ}.31

To estimate the model empirically, we code each signal si,t to the closest value of V1 =

{−2δ, 0, 2δ} denoted by ŝi,t, each entry ei,t to the closest value of Vt denoted by êi,t, and

each target tari,t to ˆtari,t :=
∑

τ<t

∑
i ŝi,τ + si,t. Analogous to the formulation of the logistic

response in (2), the likelihood of observing entry êi,t ∈ Vt is therefore described as

σ̂(êi,t; F̂i,t, λ) =
exp(λ(

∫
πi,t(êi,t, ˆtari,t)dF̂i,t)

Σê∈Vtexp(λ(
∫
πi,t(ê, ˆtari,t)dF̂i,t)

,

where F̂i,t describes the belief about the target ˆtari,t ∈ Vt. This belief is constructed re-

cursively as in the previous subsection’s model, such that players employ different precision

levels (λ1, λ2, ...) at different levels of the belief hierarchy.

30We ran simulations to show that the large majority of empirical entries and targets can be suitably
approximated on the grid, in the sense that they do not lie outside of the extremal grid values. The proportion
of observations that lie outside of the grid’s range is, however, far bigger in the multi-file treatment than in
the single-file treatment. The simulations also show that allowing for more than two coin flips per person
would improve the approximation only very slowly, yet at a significant cost in terms of complexity.

31Formally, in single file, Vt = {−2tδ,−2(t − 1)δ, . . . ,−2δ, 0, 2δ, . . . , 2(t − 1)δ, 2tδ}, whereas in multi file,
Vt = {−(4(t− 1) + 1)2δ,−4(t− 1)2δ, . . . ,−2δ, 0, 2δ, . . . , 4(t− 1)2δ, (4(t− 1) + 1)2δ}.
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Tables 7 and 8 present the estimations for single file and multi file, respectively. The

first column of each table shows the parameter estimates in a QRE, where all λ values

are constant. The second column shows the benchmark case of full randomness, where

λ1 = 0. Subsequent columns report low-level parameter estimates when setting higher-level

parameters to zero. These models generalize Level-k models by permitting probabilistic

reasoning at every level of reasoning. For example, the column labelled “[λ3 = 0]” gives the

estimate of a probabilistic version of BRTNI/Level 2. Up to five parameters can be reliably

estimated in both datasets.

Table 7: Single-file estimates of grid-based approximation (standard errors in parentheses)

Restrictions

QRE [λ1 = λ2 = . . .] [λ1 = 0] [λ2 = 0] [λ3 = 0] [λ4 = 0] [λ5 = 0] [λ6 = 0]

λ1 0.33 (.01) 0 (-) 0.19 (.43) 0.24 (.12) 0.26 (.03) 0.27 (.01) 0.26 (.01)

λ2 0.33 (.01) - 0 (-) 0.21 (.55) 0.39 (.09) 0.67 (.08) 1.15 (.11)

λ3 0.33 (.01) - - 0 (-) 0.20 (.01) 0.42 (.02) 0.62 (.02)

λ4 0.33 (.01) - - - 0 (-) 0.20 (.01) 0.37 (.01)

λ5 0.33 (.01) - - - - 0 (-) 0.19 (.01)

Log likelihood -1110.4 -1536.1 -1288.2 -1173.6 -1108.3 -1056.7 - 1020.1
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Table 8: Multi-file estimates of grid-based approximation (standard errors in parentheses)

Restrictions

QRE [λ1 = λ2 = . . .] [λ1 = 0] [λ2 = 0] [λ3 = 0] [λ4 = 0] [λ5 = 0] [λ6 = 0]

λ1 0.13 (.01) 0 (-) 0.09 (.17) 0.11 (.14) 0.11 (.05) 0.11 (.01) 0.11 (.01)

λ2 0.13 (.01) - 0 (-) 0.31 (.15) 0.54 (.26) 0.68 (.02) 0.74 (.14)

λ3 0.13 (.01) - - 0 (-) 0.26 (.23) 0.51 (.03) 0.62 (.10)

λ4 0.13 (.01) - - - 0 (-) 0.39 (.02) 0.63 (.12)

λ5 0.13 (.01) - - - - 0 (-) 0.52 (.19)

Log likelihood -1361.9 -1432.5 -1373.8 -1328.5 -1315.7 -1311.3 -1310.3

The estimates confirm the general results of the descriptive analysis and the regressions:

in single file, behavior demonstrates a higher depth of reasoning than in multi file. Not

only are the parameter estimates larger in single file than in multi file—indicating that par-

ticipants play closer to best responses, believe that their predecessors play closer to best

responses, etc.—higher-level parameters have greater statistical significance in single file

than in multi file. Comparing across the columns of Table 8, only λ1, λ2 and λ3 improve

the models’ goodness of fit at high levels of significance, whereas λ4 and λ5 are less rele-

vant.32 Moreover, whereas the point estimate λ3 = 0.26 in multi file provides evidence of

reasoning at a higher level than that employed by BRTNI/Level 2—participants reckon that

their predecessors believe their own predecessors play more rationally than pure noise, and

hence expect their predecessors’ actions to embed inferences from their own predecessors—

its statistical insignificance (and limited magnitude relative to λ2) suggests a limited role for

32The standard errors of λ1 and λ2 are fairly large, owing to the fact that significant shares of decisions
follow BNE and other predictions exactly. We test for the significance of higher levels of reasoning using
likelihood-ratio tests. The significance levels of rejecting the indicated model restrictions (against the next
more flexible restriction) are p < 0.01 for each of the restrictions in single file as well as for {[λ1 = λ2 = ...],
[λ2 = 0], [λ3 = 0], [λ4 = 0]} in multi file. For [λ4 = 0] in multi file, the critical level is p = 0.16.
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such sophistication. Estimating higher-level parameters improves the goodness of fit of the

parameter estimates of single file in Table 7 much more substantially. Overall, in multi file,

a model with two parameters λ1 and λ2 (i.e. with restriction [λ3 = 0]) outperforms QRE,

which can be interpreted as saying that the noisy version of BRTNI outperforms the noisy

version of BNE. In single file, the opposite is true.

6.3 Do people recognize others’ mistakes?

In this subsection we focus on a qualitative question that underlies much of the previous

analysis: do participants take other people’s mistakes—and their collective tendency to

overshoot—into account rationally?

One quick answer lies in how participants shade immediate predecessors’ entries. To

explore this question, we compare the ex-post optimal reaction shading rule to participants’

actual shading rule. The quantity tart−st
et−1

gives the ratio of own target (net of own signal)

to last period’s entry in the same game. (In the case of multi-file, we take et−1 to denote

the average of the four immediate predecessors’ entries.) The quantity et−st
et−1

describes the

participant’s actual reaction to the previous entry. The two measures vary widely across

our participants. However, in both treatments, the median value of the optimal shading

factor lies below the median of the actual shading factor: for single file, tart−st
et−1

= 0.79 and

et−st
et−1

= 1.00; for multi file, tart−st
et−1

= 0.63 and et−st
et−1

= 2.82. Much like in related analysis at

the end of Section 3, we see modest under-shading for single file but vast under-shading for

multi file.

These last calculations use only information about how participants responds to their

immediate predecessors, and require knowledge of signal realizations unavailable to the par-

ticipants. We therefore turn to an exploration of whether people’s behavior is better de-

scribed by a Nebi-style model in which they do not heed others’ errors or a QRE-style model

in which people take others’ errors into account. As explained earlier, the immense size
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of the signal and action spaces in our model prevent us from estimating logit QRE. One

alternative would be simplify the problem using the grid-based approximation of Section

6.2. For the present question, this has the drawback that it rounds the most extreme entries

in the dataset towards zero, penalizing models that correctly predict overshooting of the

predecessors’ entries.

We offer here a different approach through a variant of QRE, dubbed “pseudo-QRE”,

that uses all information in the entries and models each player’s entry as a function of

private signal and the history hi,t, without truncation. We keep the analysis tractable by

assuming that each player deviates from best responding to her predecessors’ actions via a

normally distributed error term. Because the players’ private signals in our experiment are

approximately normally distributed, this formulation allows us to use standard formulas for

Gaussian inference to provide closed-form expressions for behavior.33

For player i in period t = 1, we assume that ei,1 is generated by the random choice rule

ẽi,1(hi,1; τε) = si,1 + εi,1,

where εi,1 ∼ N(0, 1/τε), with τε being the precision of the error term εi,1 (the inverse of its

variance). Like in logit QRE, Player i in pseudo-QRE chooses all actions with positive prob-

ability, and better actions with higher probability.34 The parameter τε orders sophistication

in a similar manner to the QRE parameter λ: as τε →∞, Player i’s choice converges to the

best response si,1; as τε → 0, Player i’s choice becomes an improper uniform distribution on

the real line.

33Let X be the number of heads from 100 flips. Our signals are S = 2X−100, which has var(2X−100) =
4var(X) = 4(0.5)(0.5)100 = 100. The random variable S is approximately N(0, 100).

34Payoffs in our experiment are isomorphic to the maximum of the absolute distance between entry and
target and a constant. It is well known that choosing the median of a distribution minimizes the expected
absolute distance between estimator and target. It is straightforward to show that for normally distributed
random variables (or, more generally, symmetric and unimodal densities), choosing the median (and, hence,
mean) maximizes expected payoff in our experiment, and that payoff decreases in distance from the mean.
As a consequence, normally distributed entries around the mean satisfy the better-reply property of QRE:
better actions get played with higher probabilities.
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Player j acting in t = 2 recognizes that player i’s choice process includes a random

component and chooses according to

ẽj,2(hj,2; τε) = E[si,1|ei,1 = ẽi,1(hi,1; τε)] + sj,2 + εj,2 = γεei,1 + sj,2 + εj,2,

where εj,2 ∼ N(0, 1/τε), and γε := τε
τε+1/100

is the formula for normal inference under the

assumption that si,1 ∼ N(0, 100) (which is approximately true) and εi,1 has precision τε.

Just as in logit QRE, in a pseudo-QRE Player j correctly perceives the randomness in

Player i’s choice. The fact that γε ∈ (0, 1) expresses that players who recognize that their

opponents make errors shade their interpretation of their predecessors’ entries towards zero.

Player k in t = 3 of the single-file game views both of his predecessors as choosing with

precision τε and views Player j as taking i’s precision to be τε:

ẽk,3(hk,3; τε)

= E[si,1|ei,1 = ẽi,1(hi,1; τε)] + E[sj,2|ej,2 = ẽj,2(hj,2; τε)] + sk,3 + εk,3

= γε(1− γε)ei,1 + γεej,2 + sk,3 + εk,3,

where εk,3 ∼ N(0, 1/τε).

Iterating gives

ẽi,t(hi,t; τε) = γε

t−1∑
j=1

(1− γε)t−1−jei,j + si,t + εi,t, (3)

where again γε = τε
τε+1/100

. The first row of Table 9 describes the maximum-likelihood

estimation of this model. The estimated precision corresponds to the inference coefficient

γε = 0.022, which demonstrates that players choose actions very noisily: in a BNE, the

parameter would be 1.
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Table 9: Sophisticated versus naive Nebi in single file.
(Standard error in parentheses.)

Model
√

1
τε

Log likelihood

Pseudo-QRE 65.37 -2707

(2.25)

Noisy Nebi 45.62 -2515

(1.47)

We can now test pseudo-QRE against our model of näıve Bayesians (Nebi). Nebi predicts

that γε = 1 and τε =∞: Nebis do not err. Allowing for finite values of τε—whilst restricting

γε = 1—enriches Nebi by possible errors in best response but retains the property that other

players are believed to play optimally. Both this “noisy Nebi” model and the pseudo-QRE

model have one degree of freedom. Consistent with our earlier finding in Table 1 that 81% of

subjects behave exactly as Nebi, Table 9 shows that noisy-Nebi fits the data far better than

pseudo-QRE. Participants in single file come closer to completely overlooking the limits to

their predecessors’ sophistication than they do to fully accounting for those limitations.

For the multi-file treatment, the formula for pseudo-QRE is almost identical:

ẽi,t(Hi,t; τε) = γε

t−1∑
j=1

(1− 4γε)
t−1−jej + si,t + εi,t,

where ej =
∑4

i=1 eij and γε = τε
τε+1/100

.

Once more we can compare the goodness of fit of pseudo-QRE to that of noisy Nebi.

The first row in Table 10 indicates that the maximum-likelihood estimate of pseudo-QRE

corresponds to the inference parameter γε = 0.0060, less than one-third its value in single

file. Just like in all previous analyses, we observe a treatment difference: the comparison of

the two models’ likelihoods shows that in multi file, pseudo-QRE fits behavior better than

does noisy Nebi, contrary to the corresponding result of single file. In multi file, accounting
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for others’ errors is far more widespread than believing others to be Bayes-rational.

Table 10: Sophisticated versus naive Nebi in multi file.
(Standard error in parentheses.)

Model
√

1
τε

Log likelihood

Pseudo-QRE 128.86 -3679

(0.58)

Noisy Nebi 245.73 -4004

(7.74)

7 Conclusion

Our experiments are designed to separate possible errors in inference that one may make

when observing others’ actions from possible unrelated errors in Bayesian updating. We

find considerable amounts of inference errors, but their prevalence and importance differ

between our two treatments. In the single-file treatment, most participants behave in a

manner consistent with BNE, and they benefit from learning from others. Nevertheless,

collectively they exhibit statistically significant degrees of excessive imitation. In the multi-

file treatment, participants engage in substantial over-imitation that produces outcomes

dramatically different from BNE predictions. Participants commit inference errors in such

abundance that the average participant would earn more if she did not have the opportunity

to learn from others’ behavior and simply entered her signal.35

We attribute the deviations from optimality mainly to redundancy neglect, through which

people fail to appreciate that their predecessors already incorporate prior observations. As

perhaps redundantly discussed in several earlier sections, this type of behavior can take many

different precise forms. Eyster and Rabin (2010) model the extreme version of BRTNI players

35Similar to our finding of treatment variation, experiments by Esponda and Vespa (2014), Albert, Costa-
Gomes and Weizsäcker (2017) and Enke (2017) show that increasing the cognitive burden of their choice
tasks reduces people’s ability to account for selection in Bayesian Games.
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who fully neglect that their predecessors’ actions incorporate inferences made from their

own predecessors; BRTNIs interpret every predecessor’s action at face value, as reflecting

that player’s private information alone. This prediction dovetails with prior experimental

literature on social-learning games, in which taking others’ play at face value features as one

of the most discussed behavioral patterns, alongside a pattern of too frequently following

one’s own signal. (See, inter alia, discussions by Kübler and Weizsäcker (2004) and March

and Ziegelmeyer (2015) on the connections and interplay of the two effects.) The finding

that people fail to think through how others think through still others’ behavior also relates

to large body of evidence from many different contexts on higher-order reasoning (see, e.g.,

the early contributions of Stahl and Wilson (1994) and Nagel (1995)).

Our experimental evidence adds to the discussion in two ways. First, our experiments

illustrate how errors in higher-order reasoning can lead people to neglect certain correlations.

Enke and Zimmermann (2015) provide evidence that experimental participants neglect the

correlation in signals when these signals draw upon a common source. By ignoring the

commonality of the underling source of information, participants in their experiment double

count that source, similar to how our experimental participants, by neglecting the redun-

dancy in their predecessors’ behavior, double count earlier participants’ actions.

Second, our experiment sheds light on several solution concepts in the behavioral/experimental

literature that it was not designed to explore. For this reason, our experiment might prove

especially informative: we designed the game because of its economic importance and the

importance of a type of error in reasoning that only partly corresponds to these general

solution concepts, rather than to vindicate or bash any one of them. Variants of redundancy

neglect that are weaker than BRTNI/Level 2 may clearly better explain the behavior—and

its consequences—than BNE, yet it is noteworthy that overall BNE clearly outperforms any

variant of cognitive-hierarchy or Level-k models that we are aware of. Out of hundreds of

choices observed, only once did behavior match Level 3 when failing to match Level 1 or

Level 2. Indeed, far more behavior matched Level 22 than Level 1 or Level 2, although of
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course we think that Level 22 is not the right conceptualization. The data patterns and

the analysis in Section 6 also suggest that in the single-file game, models which incorporate

decision noise such as Quantal Response Equilibrium or noise-enhanced versions of cognitive-

hierarchy models like Camerer, Ho and Chong (2004) offer little improvement over BNE.36

Not only do these models miss systematic deviations made out of proportion to the errors’

low costliness, but their very raison d’être—the (generally quite compelling) notion that

players who make mistakes may optimize with respect to other players’ mistakes—turns

out backwards here because our many Nebi participants very often fail to take into account

their predecessors’ over-counting (or other mistakes). As much as all of these models de-

serve credit for improving fit in many games, it may also be worth noting examples such

as our single-file game in which the enhanced solution concepts offer worse predictions than

traditional solution concepts.

36In a related discussion, Goeree, Palfrey, Rogers and McKelvey (2007) show how random noise can help
overcome informational externalities in social-learning games and how, therefore, QRE leads to greater
efficiency than BNE in traditional coarse-action settings. In our settings, because BNE yields the first best,
QRE can only lessen efficiency.
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A Additional Tables and Graphs

The following figures correspond to Figures 1, 2, 4 and 5, but depict behaviour in the first,

second, and third games of each session separately. In the single-file treatment, they show

that entries are more extreme in the first two games of each session than in the final game;

in the multi-file treatment, they show no discernible pattern.

The first three figures in this appendix should be compared to Figure 2.

Figure 7: Single-file mean absolute entries and targets for first games
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Figure 8: Single-file mean absolute entries and targets for second games

Figure 9: Single-file mean absolute entries and targets in third games

.
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The next three figures in this appendix should be compared to Figure 3.

Figure 10: Single-file median absolute entries and targets for first games

Figure 11: Single-file median absolute entries and targets for second games
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Figure 12: Single-file median absolute entries and targets in third games

The next three figures should be compared to Figure 4.

Figure 13: Multi-file mean absolute entries and targets for first games
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Figure 14: Multi-file mean absolute entries and targets for second games

Figure 15: Multi-file mean absolute entries and targets in third games

.
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The next three figures should be compared to Figure 5.

Figure 16: Multi-file median absolute entries and targets for first games

Figure 17: Multi-file median absolute entries and targets for second games
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Figure 18: Multi-file median absolute entries and targets in third games

Figures 19 and 20 show the distributions of the deviations from target, such that higher

values indicate higher deviations in the same direction as BRTNI’s deviation from target.

Figure 19: Single-file entry minus target. Positive values indicate deviations whose sign
matches that of BRTNI’s deviation. For scaling purposes, the 127 entries on target (zero
deviation), and six outliers in the right tail, are not depicted.
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Figure 20: Multi-file entries off target. Positive values indicate deviations whose sign matches
that of BRTNI’s deviation. For scaling purposes, the 172 entries on target (zero deviation),
56 outliers in the right tail, and 4 outliers in the left tail are not depicted.

.
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Table 11 lists the frequencies of cases where a model’s simple version is inconsistent with

an observation but Table 1 lists the observation as consistent (cf Footnote 15).

Table 11: Single-file entries inconsistent with a model’s simple version but consistent with
an expanded version

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 0 0 0 0 0

t=2 0 0 0 0 0

t=3 0 0 0 0 0

t=4 0 0 0 0 0

t=5 0 0 0 0 0

t=6 0 0 0 0 0

t=7 0 0 0 0 0

t=8 0 0 0 0 0

t=9 0 0 0 0 0

t=10 0 0 0 0 0

t=11 0 0 0 0 0

t=12 0 0 0 0 0

t=13 0 1 0 0 0

t=14 0 1 1 0 0

t=15 0 0 0 0 0

t=16 0 0 0 0 1

t=17 0 1 0 0 0

t=18 0 1 0 0 1

t=19 0 0 1 0 0

t=20 0 0 0 0 0

t=21 0 0 0 0 0

t=22 0 1 0 0 1

t=23 0 1 0 0 1

t=24 0 0 1 0 1

Total 0 6 3 0 5
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The following tables are the analogues of Table 1, broken down by game.

Table 12: Single-file entries consistent with different behavioral models for first games

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 7 7 7 7 0

t=2 1 5 5 5 1

t=3 0 4 3 3 0

t=4 0 4 0 3 0

t=5 1 0 0 5 1

t=6 1 1 1 4 1

t=7 1 1 0 5 0

t=8 0 1 0 5 1

t=9 1 1 0 5 0

t=10 0 1 0 4 2

t=11 2 1 0 2 2

t=12 1 0 0 3 3

t=13 2 0 0 5 1

t=14 1 0 0 4 3

t=15 0 0 0 6 1

t=16 2 0 0 6 0

t=17 0 0 0 7 0

t=18 1 0 0 3 3

t=19 1 1 0 6 0

t=20 0 0 0 5 2

t=21 0 0 0 4 3

t=22 1 0 0 5 2

t=23 1 0 0 6 1

t=24 1 1 0 5 1

Total in t ≥ 3 17 16 4 101 27

Total in t ≥ 4 17 12 1 98 27

Total 25 28 16 113 28
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Table 13: Single-file entries consistent with different behavioral models for second games

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 7 7 7 7 0

t=2 0 6 6 6 1

t=3 1 2 6 6 0

t=4 0 1 0 5 2

t=5 0 1 0 6 0

t=6 1 0 0 6 0

t=7 0 0 0 6 1

t=8 1 0 0 7 0

t=9 0 1 0 7 0

t=10 0 0 0 4 3

t=11 1 0 0 4 2

t=12 0 0 0 6 1

t=13 1 0 0 6 0

t=14 1 0 0 5 2

t=15 0 0 0 6 1

t=16 0 0 0 4 3

t=17 0 0 0 7 0

t=18 1 0 0 6 1

t=19 0 0 0 7 0

t=20 0 0 0 6 1

t=21 0 0 0 5 2

t=22 0 0 0 4 3

t=23 2 0 0 5 2

t=24 1 1 0 6 0

Total in t ≥ 3 10 6 6 124 24

Total in t ≥ 4 9 4 0 118 24

Total 17 19 19 137 25
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Table 14: Single-file entries consistent with different behavioral models in third games

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 7 7 7 7 0

t=2 0 7 7 7 0

t=3 0 0 5 5 2

t=4 1 0 0 7 0

t=5 0 1 0 6 0

t=6 0 0 0 5 2

t=7 0 0 0 6 1

t=8 0 0 0 5 2

t=9 0 0 0 6 1

t=10 0 0 0 6 1

t=11 0 0 0 5 2

t=12 0 0 0 5 2

t=13 1 0 0 5 2

t=14 2 1 0 5 0

t=15 0 0 0 3 4

t=16 1 0 0 6 0

t=17 1 1 0 6 0

t=18 0 0 0 6 1

t=19 0 0 0 6 1

t=20 0 0 0 7 0

t=21 0 0 0 3 4

t=22 0 0 0 6 1

t=23 0 0 0 6 1

t=24 0 0 0 6 1

Total in t ≥ 3 6 3 5 121 28

Total in t ≥ 4 6 3 0 116 26

Total 13 17 19 135 28
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Table 15 complements Table 1 and the previous three tables by listing the numbers of

subjects for whom n of 6 entries coincide exactly with the prediction of the listed models,

where n = 0, 1, . . . , 6.

Table 15: Number of single-file subjects whose entries coincide exactly with predictions of
different behavioural models for exactly n of 6 games

Cursed BRTNI Level 3 Nebi

(k = 1) (k = 2) (k = 3) (k > t− 1)

n = 6 0 0 0 32

n = 5 0 0 0 25

n = 4 0 1 0 9

n = 3 3 1 0 5

n = 2 9 9 10 6

n = 1 28 39 34 5

n = 0 44 34 40 2

Total 84 84 84 84
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Table 16 lists the frequencies of cases where a model’s simple version is inconsistent with

an observation but Table 3 lists the observation as consistent (cf Footnote 15).

Table 16: Multi-file entries inconsistent with a model’s simple version but consistent with
an expanded version

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 0 0 0 0 0

t=2 0 0 0 0 0

t=3 0 0 0 0 0

t=4 0 1 1 0 0

t=5 0 1 3 0 0

t=6 0 0 1 0 0

Total 0 2 4 0 0
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The following tables are the analogues of Table 3, broken down by first, second, and third

games.

Table 17: Multi-file entries consistent with different behavioral models in first games

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 28 28 28 28 0

t=2 3 21 21 21 4

t=3 3 9 1 1 18

t=4 4 9 0 1 15

t=5 0 7 0 2 19

t=6 0 3 0 0 25

Total in t ≥ 3 7 28 1 4 77

Total in t ≥ 4 4 19 0 3 59

Total 38 77 50 53 81

Table 18: Multi-file entries consistent with different behavioral models in second games

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 27 27 27 27 1

t=2 0 20 20 20 8

t=3 0 4 12 12 12

t=4 0 7 0 5 17

t=5 1 13 0 2 13

t=6 0 4 0 1 23

Total in t ≥ 3 1 28 12 20 65

Total in t ≥ 4 1 24 0 8 53

Total 28 75 59 67 74
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Table 19: Multi-file entries consistent with different behavioral models for third games

Period Cursed BRTNI Level 3 Nebi NA

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 26 26 26 26 2

t=2 0 26 26 26 2

t=3 0 5 16 16 7

t=4 0 6 0 10 12

t=5 0 9 0 2 17

t=6 1 1 0 1 25

Total in t ≥ 3 1 21 16 29 61

Total in t ≥ 4 1 16 0 13 54

Total 27 73 68 81 65
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Table 20 complements Table 3 and the previous three tables by listing the numbers of

subjects of whose six entries exactly x are consistent with each of the listed models, where

n = 0, 1, . . . , 6.

Table 20: Number of multi-file subjects whose entries are consistent with different behavioral
models for exactly n games

Cursed BRTNI Level 3 Nebi

(k = 1) (k = 2) (k = 3) (k > t− 1)

n = 6 0 7 0 0

n = 5 0 6 0 4

n = 4 0 10 0 9

n = 3 4 14 32 24

n = 2 22 27 31 27

n = 1 37 18 19 18

n = 0 21 2 2 2

Total 84 84 84 84
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Figure 21 is analogous to Figure 6 but uses the single-file data. It shows the between-

game average entries and targets in single file and by period, separated out according to the

sign of the sum of the game’s first four signals. Apart from the episode in Game 34, entries

do not discernibly deviate from target. Figure 21 shows that the sign of early signals does

not cause systematic deviations from target.

Figure 21: Average entry and target in single file, separated out by the sum of the game’s
first four signals.
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The following table shows results analogous to those of Table 5, for single file.

Table 21: Single-file regressions of period-t entries on current signals and entries in past
super-periods. Standard errors in parentheses are clustered by session.

e1̃ e2̃ e3̃ e4̃ e5̃ e6̃

e1̃ - 0.659 (.228) -0.187 (.484) 0.401 (.329) -0.109 (.143) 0.364 (.291)

e2̃ - - 1.068 (0.493) -0.155 (.119) 0.198 (.511) -0.175 (.136)

e3̃ - - - 0.043 (.026) -0.030 (.007) 0.122 (.020)

e4̃ - - - - 0.213 (.012) -0.297 (.129)

e5̃ - - - - - 0.105 (.166)

st 0.782 (.155) 1.531 (0.441) -3.611 (3.594) 0.741 (.474) 0.710 (.125) 0.427 (.642)

R2 0.18 0.51 0.48 0.19 .89 0.67

obs 84 84 84 84 84 84

BRTNI predicts that all coefficients in the table should exceed one. For example, a

BRTNI player at t = 5 should play

e5 =
∑
τ<5

eτ + s5 = e1̃ + s5.

A BRTNI player at t = 6 should play

e6 =
∑
τ<6

eτ + s6 = e1̃ + e5 + s6 = 2e1̃ + s5 + s6,

and so forth. Since st, for t = 5, . . . , 8, is uncorrelated with e1̃, regressing the observations

{et}8t=5 on e1̃ and own signal yields a predicted coefficient larger than one; the same pattern

holds for later entries. Hence, Table 21 illustrates once again that any redundancy neglect

in single file takes a far milder form than that expressed by BRTNI.

64



References

Albert, Philipp, Miguel A. Costa-Gomes, and Georg Weizsäcker, “Cursed bets on
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