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Abstract

In a sequence of first-price auctions with stable private values bidders strategically
conceal their private information until the last auction. We characterize equilib-
rium bidding and explore how such signal jamming affects the dynamics of equi-
librium prices.
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1. Introduction

Many market transactions have an auction structure, and many such auctions
are recurring events. For example, price competition between retailers is essen-
tially a (reverse) auction. And this auction is typically a recurring event in which
the relevant valuations (unit costs) are stable, at least for some time. Evidently,
in this case bidders must pay attention to the information they reveal about their
valuations through their bids. This gives rise to a problem of strategic information
transmission.

The present paper analyzes equilibrium bidding in a sequence of first-price
auctions, when bidders have stable private values. Bidders want to win each auc-
tion, but they are also concerned with concealing their valuation in order to reduce
the intensity of price competition in later auctions.
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If bidders play strictly monotone strategies in the first auction, they reveal their
private information, and the second auction is one under complete information,
resulting in fierce competition that wipes out profits. Bidders thus attempt to keep
their rival unsure about their valuation by playing non-monotone (partial-pooling)
strategies, mimicking the bidder with a low valuation with some probability.

Partial-pooling results have been observed in other branches of the auctions lit-
erature. For example, Haile (2000) finds that the possibility of resale, triggered by
more precise information acquired after the auction, induces pooling for a range
of low signals at a bid equal to the reserve price.

More in line with our focus on strategic information transmission is the analy-
sis of sequential procurement by Waehrer (1999) and Kannan (2010), and the
analysis of repeated contests by Münster (2009). There, pooling also serves the
purpose to blur the information revealed through bids to prevent that the procurer
resp. other contestants take(s) advantage of it.

2. The model

Consider a sequence of two first-price auctions for two identical objects, and
two ex ante symmetric bidders, named 1 and 2. Bidders draw their private valua-
tion before the first auction and keep that valuation in the second auction. Before
the second object is auctioned, bidders observe both bids of the first auction and
use this information to update their beliefs concerning their rival’s valuation. Val-
uations V are iid random variables which assume either a low value 0 (normalized)
or a high value v > 0 with the prior probability ρ := Pr{V = v} ∈ (0, 1).

If bidders tie, the winner is selected by flipping a fair coin, with one exception:
If bidders tie in the second auction and exactly one bid was positive in the first
auction, the one who made a positive bid in the first auction is selected as the
winner.1

We denote bidder i’s bid in the jth auction by b j
i , and continuation payoffs by

π(h), where h denotes the history of the game prior to the second auction.
The possible histories of the game, h, are described by past bids observed by

both players. The following histories must be distinguished; there, only the sign
of observed bids matters: 1) The history at the beginning of the game, h∅; 2)
the histories with both bids either zero or positive: h00 := {b1

1 = 0, b1
2 = 0} and

1Without this assumption the existence of equilibrium fails. However, this problem is artificial
since existence can be restored by allowing positive but infinitesimally small bids. Therefore, it is
appropriate to bypass this problem by a convenient tie rule, as proposed here.
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h11 := {b1
1 > 0, b1

2 > 0}; 3) the histories with one positive bid and one bid equal to
zero: h10 := {b1

1 > 0, b1
2 = 0} and h01 := {b1

1 = 0, b1
2 > 0}.

3. Equilibrium

A bidder with valuation V = 0 obviously bids zero with certainty in both
auctions (which will not be repeated from here onwards). This does not, however,
imply that a zero bid can only come from a bidder with valuation V = 0. Indeed,
in a signal-jamming equilibrium a bidder with V = v may also bid zero in the first
auction in order to keep his rival in doubt about his valuation.

We now solve the equilibrium strategies of a bidder with valuation V = v
in both auctions, for all possible histories of the game, employing the equilib-
rium concept of a sequential equilibrium with observable moves. Thereby, mixed
strategies are stated as cumulative distribution functions.

As a working hypothesis, suppose F : [0, b̄]→ [0, 1] is the symmetric mixed-
strategy equilibrium of a bidder with V = v in the first auction (history h∅), where
F(0) may be positive. This allows us to characterize the equilibrium play in the
second auction. We then use this to compute the symmetric equilibrium of the first
auction. Altogether, this procedure confirms that the game has a unique symmetric
equilibrium and solves it explicitly.

To avoid unnecessary duplication we state only the equilibrium strategies and
beliefs of one player, named player 1.

Equilibrium in the second auction. After the first auction, bidders observe bids,
process this information to update their beliefs about the rival’s valuation, and then
play the second auction. Updated beliefs must be consistent with the equilibrium
strategy of the first auction and the observed bids. Hence, using Bayes’s rule
whenever applicable, posterior beliefs are:2

Pr{V2 = v | b1
2} =

1 if b1
2 > 0,

F(0)ρ
F(0)ρ+(1−ρ) =: q if b1

2 = 0.
(1)

Proposition 1 (Second auction). Consider the second auction. The equilibrium
strategy of player 1 (with V1 = v) depends on the history as follows: h11 ⇒ b2

1 = v,

2Note, this belief system involves only a fairly innocent prescription of “off-equilibrium path”
beliefs by stipulating that Pr{V2 = v | b1

2 > 0} = 1 also for bids that are higher than “predicted”,
i.e., for b1

2 > b̄.
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h ∈ {h00, h01} ⇒ G(b2
1), h = h10 ⇒ H(b2

1):

G : [0, qv]→ [0, 1], G(b) =
b(1 − q)
(v − b)q

=
b(1 − ρ)

(v − b)ρF(0)
, (2)

H : [0, qv]→ [0, 1], H(b) =
v(1 − q)

v − b
=

v(1 − ρ)
(v − b) (1 − ρ + ρF(0))

, (3)

where H has one mass point at b = 0. The associated equilibrium continuation
payoffs are π(h11) = 0, π(h00) = π(h10) = π(h01) = v(1 − q).

Proof. Equilibrium strategies and payoffs are self-evident for h11. Histories h01

and h10 result in an asymmetric, and history h00 in a symmetric one-shot auction,
solved in Jeitschko and Wolfstetter (2002, Prop. 3).

Equilibrium in the first auction. Signal jamming pays for bidder 1 only if bidder
2 also has a high valuation. However, signal jamming is costly, and its benefit
outweighs the cost only if it is sufficiently likely that bidder 1 meets a high-value
bidder 2.

Proposition 2. Suppose ρ > 1/3. The equilibrium strategy in the first auction
(conditional on V = v) is F : [0, b̄]→ [0, 1]:

F(b) :=
1 − ρ
ρ

b
v − b

+
v

v − b

√
3 − 4ρ + ρ2 − 2(1 − ρ)

ρ
, (4)

b̄ := v
(
2 − ρ −

√
3 − 4ρ + ρ2

)
. (5)

F has a mass point at zero: F(0) =
√

(1/ρ − 1)(3/ρ − 1) − 2(1/ρ − 1) > 0 that has a
maximum at ρ = 3/4 and approaches zero as ρ→ 1 and as ρ→ 1/3.

Proof. Consider one bidder, say bidder 1 with V = v, and history h∅ (first auction).
To confirm the asserted equilibrium mixed-strategy F, stated in (4), we must show
that this bidder is indifferent between all bids from the support of F, which is [0, b̄]
where b̄ is stated in (5).

If bidder 1 with V = v makes a bid b ∈ (0, b̄], his payoff is equal to

(v − b + π(h11)) ρ (F(b) − F(0)) + (v − b + π(h10)) ((1 − ρ) + ρF(0)) . (6)

Whereas if he bids zero, his payoff is(v
2

+ π(h00)
)

(ρF(0) + (1 − ρ)) + π(h01)ρ(1 − F(0)). (7)

And the assertion follows immediately.
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We mention that no signal jamming occurs if ρ ≤ 1/3; in that case, a high-
value bidder plays the myopic strategy K : [0, ρv] → [0, 1], K(b) := (1−ρ/ρ)(b/v−b)
in the first auction, and in the second auction bids v if he has observed a pos-
itive first-auction bid from his rival, and otherwise bids zero. While this is the
unique symmetric Bayesian Nash equilibrium, that equilibrium is not a sequential
equilibrium.3

4. Signal jamming

Signal jamming occurs if a bidder with a high valuation bids zero in the first
auction with positive probability, F(0) > 0, and thus sometimes mimics a bidder
with a low valuation in order to keep the rival uninformed.

Altogether, bidder 1 benefits from signal jamming if and only if bidder 2 also
has a high valuation. Signal jamming leads bidder 2 to update his belief from ρ
to Pr{V1 = v | b1

1 = 0} = q < ρ instead of revealing bidder 1’s type, which in
turn induces him to bid stochastically lower, no matter how he bid in the first auc-
tion. If bidder 2 made a positive bid in the first auction, he plays the stochastically
lower mixed-strategy H(b) > G(b),∀b ∈ [0, qv], and if he also engaged in sig-
nal jamming, both bidders play the mixed-strategy G, which preserves a positive
expected profit in the second auction.

However, signal jamming is also costly since it entails the risk of losing the
first auction. It follows that it pays to “invest” in signal jamming only if it is
sufficiently likely that the rival has a high valuation. Interestingly, this relationship
is not monotone, and F(0) has a global maximum at ρ = 3/4.

We mention that signal jamming induces pointwise less aggressive bidding in
the first auction, in the sense that the myopic strategy K first-order stochastically
dominates the (continuously extended) strategy F̄(b) := min{F(b), 1}, i.e., F̄(b) ≥
K(b),∀ b ∈ [0, ρv].

5. Dynamics of equilibrium prices

The study of price sequences in sequential auctions has received much at-
tention in the literature (see, for example, McAfee and Vincent, 1993; Gale and
Hausch, 1994; Jeitschko, 1999). In the present context, one might expect prices to

3For if we suppose V1 = v and consider the history h00, the consistency of beliefs requires
that each bidder believes that his rival has a zero valuation; but then bidding zero is not the best
response of bidder 1 (in fact, no best response exists in that case).
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be stochastically increasing since signal jamming involves bidding low in the first
auction.

In the following assume ρ > 1/3 (because otherwise no signal jamming oc-
curs and equilibrium prices are stationary), and denote the continuously extended
strategies for the enlarged domain [0, v] by Ḡ(b) := min{G(b), 1}, H̄(b) := min{H(b), 1}.

Lemma 1. The probability distribution of the equilibrium price in the first auc-
tion, FP1 : [0, v]→ [0, 1], is

FP1(p) : = Pr{P1 ≤ p}

= Pr{b̃1
1 ≤ p and b̃1

2 ≤ p}

=

(1 − ρ + ρF(p))2 if p ≤ b̄,
1 if p ≥ b̄.

(8)

FP1 has exactly one mass point, FP1(0) =
(
(1 − ρ) −

√
3 − 4ρ + ρ2

)2
> 0, that is

strictly decreasing in ρ with limρ→1 FP1(0) = 0.

Lemma 2. The probability distribution of the equilibrium price in the second
auction, FP2 : [0, v]→ [0, 1], is

FP2(p) = Pr{P2 ≤ p}

= ρ2
(
(1 − F(0))2 · 0 + F(0)2Ḡ(p)2 + 2F(0)(1 − F(0))Ḡ(p)H̄(p)

)
+ 2ρ(1 − ρ)

(
F(0)Ḡ(p) + (1 − F(0))H̄(p)

)
+ (1 − ρ)2.

(9)

FP2 has mass points at p = 0 and p = v:

FP2(0) = (1 − ρ)
√

3 − 4ρ + ρ2 > 0, (10)

Pr{P2 = v} =
(
2 − ρ −

√
3 − 4ρ + ρ2

)2
> 0. (11)

Pr{P2 = v} is strictly increasing in ρ, and FP2(0) is decreasing with limρ→1 FP2(0) =

0.

Proposition 3. Equilibrium prices are increasing in the sense of first-order sto-
chastic dominance, FP2(p) ≤ FP1(p) (with strict inequality except for p = v), if
and only if ρ is sufficiently large, i.e., ρ > ρ∗ := 2 − 3/5

√
5.

This strong stochastic order does not apply to ρ ∈ (1/3, ρ∗). However, in either
case E[P2] > E[P1].
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Proof. 1) Suppose ρ > ρ∗. Let p ∈ [0, v) and define (where the functions G and H
are applied to the enlarged domain [0, v)):

F̃P2(p) : = ρ2
(
(1 − F(0))2 · 0 + F(0)2G(p)2 + 2F(0)(1 − F(0))G(p)H(p)

)
+ 2ρ(1 − ρ) (F(0)G(p) + (1 − F(0))H(p)) + (1 − ρ)2.

By definition, G(p) ≥ Ḡ(p),H(p) ≥ H̄(p), with equality for all p ∈ [0, qv] and
strict inequality for all p ∈ (qv, v). Therefore, it follows immediately that F̃P2(p)
is a pointwise upper bound of FP2(p), i.e., F̃P2(p) ≥ FP2(p), for all p ∈ [0, v), and
hence, in particular, for all p ∈ [0, b̄].

As one can easily confirm, FP1 > F̃P2(p),∀p ∈ [0, b̄] ⇐⇒ ρ > ρ∗. Since
FP1(p) = 1,∀b ≥ b̄ and FP2 < 1,∀b < v (since it has a mass point at p = v),
we conclude that ρ > ρ∗ ⇒ FP2(p) ≤ FP1(p), with strict inequality everywhere
except at p = v, as illustrated in the right-hand side of Figure 1. Of course, the
established first-order stochastic-dominance relationship implies E[P2] > E[P1].

2) Suppose ρ ∈ (1/3, ρ∗). Then, as one can easily confirm, FP2(0) > FP1(0).
Moreover, FP1(p) = 1 > FP2(p),∀p ∈ [b̄, v) (since FP1(b̄) = 1 and FP2 has a
mass point at p = v). Therefore, FP2(p) and FP1(p) must intersect at least once;
hence no first-order stochastic-dominance relationship applies to P2 and P1, as
illustrated in the left-hand side of Figure 1.

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

FP1 , FP2

FP1

FP2

p

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

FP1 , FP2

FP1

FP2

p

Figure 1: Comparison between FP1 (dashed) and FP2 (solid) for v = 1 and ρ = 1/2 < ρ∗ (left) resp.
ρ = 3/4 > ρ∗ (right)

3) Computing expected equilibrium prices, one finds, using (8) and then (4)
and (5),

E[P1] =

∫ v

0
pdFP1(p) =

∫ b̄

0
2p (1 − ρ + ρF(p)) ρdF(p)

= v
(
7 − 2ρ(4 − ρ) − 2(2 − ρ)

√
3 − 4ρ + ρ2

)
.
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Similarly, the expected price in the second auction is, using equations (9) and (11),

E[P2] =

∫ v

0
pdFP2(p) =

∫ qv

0
pdFP2(p) + v Pr{P2 = v}

=
v
(
14 − 5ρ3 + 25ρ2 − 34ρ − (8 + 5ρ2 − 14ρ)

√
3 − 4ρ + ρ2

)
√

3 − 4ρ + ρ2 − (1 − ρ)

Therefore, after some rearrangements, for all ρ > 1/3:

E[P1] − E[P2] = v
√

3 − 4ρ + ρ2
(
5ρ − 7 + 4

√
3 − 4ρ + ρ2

)
< 0,

as asserted.

6. Discussion

In the present paper we assumed that bidders have stable valuations. An al-
ternative framework would be to assume that valuations are subject to stochastic
scale effects, as in Jeitschko and Wolfstetter (2002).

We also assumed that bidders observe all first auction bids before they bid in
the second auction. If instead bidders could only learn whether they either won
or lost the first auction, in some subgames bidders would know the rank order of
valuations, as in Landsberger et al. (2001) and Février (2003).

Moreover, we assumed a passive auctioneer. Therefore, signal jamming served
exclusively the purpose of misleading the rival bidder. The scope of signal jam-
ming is further increased if the auctioneer is able to adjust reserve prices to take
advantage of information acquired during the first auction, as in Caillaud and
Mezzetti (2004).
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