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Abstract

In many auctions, the auctioneer is an agent of the seller. This invites corruption.
We analyze a model in which the auctioneer orchestrates bid rigging by inviting a
bidder to either lower or raise his bid, whichever is more profitable. The interplay
between these two types of corruption gives rise to a complex bidding problem
that we tackle with numerical methods. Our results indicate that corruption does
not only redistribute surplus away from the seller, but also distorts efficiency. We
furthermore explain why both, the auctioneer and bidders, have a vested interest
in maintaining corruption.
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1. Introduction

Corruption is generally defined as the “misuse of a position of trust for dishon-
est gain.” In an auction context such a misuse occurs if the players in an auction
game collude and twist the rules to their mutual benefit. This may take the form of
collusion among bidders who form a bidding ring or a dishonest agent auctioneer
who engages in bid rigging in concert with his favored bidder(s).
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Zürich, the Stockholm School of Economics, and Korea University. Financial support was re-
ceived from the Deutsche Forschungsgemeinschaft, SFB Transregio 15, “Governance and Effi-
ciency of Economic Systems.”

Preprint submitted to Journal of Economic Dynamics & Control February 27, 2010



The present paper analyzes corruption in auctions that involves a dishonest
auctioneer. This corruption may be a simple bilateral affair where the dishonest
auctioneer rigs bids in favor of one bidder in exchange for a bribe. Or it may
involve several bidders who jointly strike a deal with the auctioneer.

Obviously, this kind of corruption can only occur if the seller delegates the
sale to an agent auctioneer. Such delegation is widely prevalent either because
the seller lacks the expertise to run the auction himself or because the seller is a
complex organization. Thereby, it does not matter whether the agent auctioneer is
a specialized auction house, an employee, or a government official. What matters
alone is the fact that the auctioneer acts independently on behalf of the seller.

Corruption involving a dishonest auctioneer can also not work easily in an
open-bid auction simply because it lacks secrecy. However, open auctions are
typically hybrids between open and sealed bid auctions since sealed bids are usu-
ally permitted and are indeed widely used. A corrupt auctioneer can then use
“magic numbers” (empty envelopes) to rig bids even if some bidders participate
in the open auction (see Ingraham, 2001).

An early case of corruption in auctions is Goethe’s dealing with his publisher
Vieweg concerning the publication of his epic poem “Hermann and Dorothea” in
the year 1797. Eager to know the true value of his manuscript, Goethe designed
a clever scheme. He handed over a sealed note containing his reservation price
to his legal Counsel Böttiger. At the same time he asked the publisher to make a
bid and send it to Böttiger, promising publication rights if and only if the bid is
at or above Goethe’s reserve price, in which case he would have to pay Goethe’s
reserve price.

Obviously, in the absence of corruption, the publisher should have bid his true
valuation. On this ground, Moldovanu and Tietzel (1998) credit Goethe for an-
ticipating the Vickrey auction. However, Goethe’s legal Counsel was not reliable;
indeed, he opened Goethe’s envelope, and, maliciously informed the publisher
about its content, before he made his bid.1 Not surprisingly, Vieweg’s bid was
exactly equal to Goethe’s reserve price, and thus Goethe’s clever scheme fell prey
to corruption.

Today, corruption is a frequently observed and well documented event espe-
cially in construction and procurement auctions. The Chartered Institute of Build-

1The letter from Böttiger to Vieweg has been preserved: “The sealed envelope is here in my
office, and you have to tell me now, dear Vieweg, how much you are prepared to offer. I feel
whatever a spectator, who is your friend, can feel. Just allow me to [. . .] say this: you cannot offer
less than 1000 Taler.” (p. 651 Jensen, 1984, our translation).
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ing, a UK professional association of the construction industry, reports that 41%
of the respondents of a representative survey have been offered bribes on at least
one occasion.2

A specific example of a rigged auction is the bidding for the construction of a
new metropolitan airport in the Berlin area, which was reopened after investiga-
tors found out that Hochtief AG, the winner of the auction, was enabled to change
its bid after it had illegally acquired the application documents of the rival bidder
IVG.3 As another example, in 1996 the authorities of Singapur ruled to exclude
Siemens AG from all public procurements for a period of five years after they
determined that Siemens had bribed Choy Hon Tim, the chief executive of Sin-
gapur’s public utility corporation PUB, in exchange for supplying Siemens with
information about rival bids for a major power station construction project.4

A flagrant case of bid rigging that perfectly fits our analysis was uncovered a
few years ago in Slovenia.5 In November 1999 the Slovenian government called
for bids to construct a tunnel of about one kilometer through the “Trojane hill,”
which is part of a highway that connects eastern and western Slovenia. DARS (the
“Motorway Company of the Republic of Slovenia,” a state enterprise) was respon-
sible for the tender. It hired DDC, a major engineering firm, as an auctioneer. The
bids were to contain a single “best price offer” and documentation of the proposed
construction. The bids had to be submitted in writing and electronically, and were
held in a secure room. A video was taken of the public opening of the sealed
bids. The two lowest bidders were Grassetto, an Italian enterprise, and SCT, a
Slovene construction firm. The video showed a yellow diskette containing SCT’s
electronic bid. At that time, Grassetto’s bid was SIT 2845 million Slovenian tolars
(around USD 12.5 million), and SCT’s bid was SIT 2945 million tolars.

Later, however, the auction committee (run by DDC) declared SCT the winner
as their bid had somehow dropped to SIT 2764 million in the meantime both in
the paper and in the electronic version. The diskette that was contained in the
documentation and on which this new offer was stored had also changed color: it
was no longer yellow, but had turned pink. Despite the various security measures,
SCT’s bid had obviously been changed after the original bids had been opened.

2Chartered Institute of Building (CIOB), “Corruption in the UK Construction Industry — Sur-
vey 2006” (http://www.ciob.org.uk/filegrab/CIOBCorruption.pdf?ref=283).

3See Wall Street Journal, Aug. 19, 1999.
4See Berliner Zeitung, Feb. 2, 1996.
5See the Slovenian newspaper Mladina, “Trojanska disketa,” 5. November 2001. A translation

can be downloaded from the authors’ websites.
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SCT was later excluded from the tender. The investigation has been terminated in
the meantime, however, because the prosecutor was unable to identify the person
who was responsible for exchanging the bids.

Motivated by these examples, this paper analyzes a particular model of bid
rigging by a corrupt auctioneer. Its essential features are as follows: (1) It is com-
mon knowledge among bidders that the auctioneer is corrupt. (2) The auctioneer
minimizes illegal contacts and negotiates only with one bidder. (3) Bid rigging
means that the auctioneer either allows the highest bidder to lower his bid to the
level of the second highest bid, or allows the second highest bidder to match the
highest bid, in exchange for a fixed share of the surplus. (4) The seller does not
install rules that are capable of deterring corruption. The reason may be a lack of
proper governance, as it is often the case when the seller is not a residual claimant.

2. Relation to the literature

There is a large literature on collusion in auctions that focuses on collusion
among bidders, and in which the incentives of the auctioneer are properly aligned
with the interest of the seller.6 There is also a smaller literature that focuses on
corruption as defined above, which is an issue only if there is delegation.

That literature views corruption either as a manipulation of the quality assess-
ment in complex bids or as bid rigging. The former was introduced in a seminal
paper by Laffont and Tirole (1991), who assume that the auctioneer has some lee-
way in assessing complex multidimensional bids, and is predisposed to favor a
particular bidder. That framework was later adopted by several authors. For ex-
ample, Celantani and Ganuza (2002) employ it to assess the impact of increased
competition on equilibrium corruption. They find, surprisingly, that corruption
may increase if the number of competing bidders is increased. More recently,
Burguet and Che (2004) extend that framework. They consider a scoring auction,
make the assignment of the auctioneer’s favorite agent endogenous, and assume
that bribery competition occurs at the same time as contract bidding. Their main
result is that corruption may entail inefficiency, and that “. . . the inefficiency cost
of bribery is in the same order of magnitude as the agent’s [i.e. auctioneer’s] ma-
nipulation capacity” (Burguet and Che, 2004, p. 61, emphasis added).

6Basic references in this literature are Graham and Marshall (1987); Mailath and Zemsky
(1991); McAfee and McMillan (1992). Recently, this literature has focused on case studies (Porter
and Zona, 1999; Athey et al., 2008) and on collusion in repeated auctions (Athey et al., 2004; Aoy-
agi, 2007).
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A second branch of that literature considers a particular form of bid rigging,
in which the auctioneer grants a “right of first refusal” to a favored bidder. This
right gives the favored bidder the option to match the highest bid and win the
auction.7 In a first-price auction, the favored bidder thus effectively plays a second
price auction, whereas the other bidders pay their bid if they win. Typically, that
literature treats the favored bidder status as predetermined. In that case efficiency
is destroyed because the favored bidder may not have the highest valuation and yet
exercise his right. Burguet and Perry (2007) and Arozamena and Weinschelbaum
(2009) analyze this model.

The attractive feature of that literature is that it can explain how corruption
destroys efficiency. Yet, that feature is lost as soon as one makes the selection of
the favored bidder endogenous. For instance, in an earlier version of their paper,
Burguet and Perry (2007) also consider a variation of their model in which bid-
ders compete for the favored bidder status before the auction by submitting bribes
to the auctioneer. This restores efficiency because the strongest bidder offers the
highest bribe. Similarly, Koc and Neilson (2008) consider a model in which the
right to play a second-price auction is sold for a lump sum bribe before the auc-
tion. In that game, only high valuation bidders buy that right, which immediately
implies efficiency.

An implausible feature of that approach is that the corrupt auctioneer ap-
proaches all bidders in order to select the favored one. This entails that the auc-
tioneer exposes himself to an exceedingly high risk of detection and punishment.
Every auctioneer who cares about the risk of detection will only propose corrup-
tion to the smallest possible number of bidders.

Another way to reduce that risk may be to restrict the size of the bribe, as
Compte et al. (2005) assume. In their analysis bribes are offered by all bidders
jointly with the submitted bids. These bribes are assumed to be restricted to the
size of small gifts. In exchange for this gift, the auctioneer allows one bidder to re-
vise his bid. In equilibrium, all bidders submit the same maximum bribe together
with a zero bid, which suggests the interpretation of the role of the corrupt auc-
tioneer as an enforcement device of collusion in the style of the zero bid pooling
equilibrium by McAfee and McMillan (1992).

The restriction of corruption to small bribes may be appealing in some appli-
cations, for example because small bribes do not expose the involved parties to
great risk. Empirically, however, bribes are often very large. In fact, corruption

7On the right of first refusal, see Bikhchandani et al. (2005) and Grosskopf and Roth (2009).
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often occurs only if bribes are sufficiently large in order to compensate for the risk
of detection.

This takes us to the third branch of the literature to which the present paper
belongs. Its key feature is that bid rigging is arranged by the auctioneer after he
has observed all the bids. This allows him to approach only a minimum number of
bidders, and select the one bidder whose collaboration delivers the highest profit.

Lengwiler and Wolfstetter (2000) and Menezes and Monteiro (2006) consider
a first-price auction where the auctioneer allows the highest bidder to lower his
bid in exchange for a bribe that is proportional to the gain from corruption.8 Es-
sentially, they show that this game is equivalent to a standard auction without
corruption in which the price to be paid by the highest bidder is a given convex
combination of the two highest bids. That game has a unique monotone symmet-
ric equilibrium which implies efficiency, as one can learn already from Güth and
van Damme (1986), Riley (1989), and Güth (1995) who solved this auction game
(Güth called it the “λ”-auction).

Their analysis is, however, incomplete, because even if the corrupt auctioneer
deals only with one bidder, it may be more profitable for him to let the second
highest bidder match the highest bid (we will refer to this as “type II corruption”),
as in a right of first refusal arrangement, rather than allowing the highest bidder to
lower his bid and match the second highest bid (to which we will refer as “type I
corruption”). A rational auctioneer flexibly chooses the alternative that creates the
largest surplus, which depends upon the spread between the two highest bids.

Specifically, if that spread is “large,” the auctioneer’s optimal choice is to pro-
pose to the highest bidder to lower his bid (type I), whereas if that spread is “small”
and bid shading is significant, he should propose to the second highest bidder to
raise his bid (type II). The key feature of our model is that we allow for this en-
dogenous choice of corruption type. Because type II corruption implies a change
of the allocation, welfare losses are now possible.

The interplay between the two types of corruption gives rise to a complex
bidding problem. We tackle this problem with the help of numerical methods.

3. The model

The owner of a single good has delegated its sale to an agent auctioneer who
runs a first-price sealed-bid auction with n ≥ 2 risk neutral bidders. The agent

8Menezes and Monteiro also consider a lump sum bribe, and Lengwiler and Wolfstetter also
consider corruption in the second price auction.
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auctioneer is corrupt and is able to rig bids after they have been submitted, and this
fact is common knowledge among all bidders. Bidders have private values which
are denoted by v1, . . . , vn. They are independent draws from the continuously
differentiable c.d.f. F with support [0, 1] and p.d.f. f (v) := F′(v). F and n are
common knowledge among all bidders and the auctioneer.

From the perspective of one bidder, the valuations of all rival bidders is a
random sample of size n − 1. We denote the highest and second highest of these
n − 1 valuations by the order statistics Y1 and Y2. The probability distribution
function of Y1 is G(x) := Pr{Y1 ≤ x} = F(x)n−1, and the joint density function of
the order statistics Y2 and Y1 is fY2Y1(z, y) = (n−1)(n−2)F(z)n−3 f (z) f (y), for z ≤ y
(and 0 otherwise), see David (1970, p. 10).

The bidding/corruption game is modeled as a non-cooperative, Bayesian game
that involves a combination of simultaneous and sequential moves, as follows.

Stage 1: Bidders simultaneously submit their bids, b1, . . . , bn, to the auction-
eer.

Stage 2: After bids have been submitted, the auctioneer opens all bids and
proposes bid rigging either to the highest or to the second highest bidder. If the
bidder rejects a proposal, the auctioneer proceeds without further manipulation.
Otherwise, the auctioneer first reveals all the submitted bids to his partner in cor-
ruption. If the proposal is made to the highest bidder, the auctioneer allows him to
reduce his bid to the next highest bid (type I corruption); if the proposal is made
to the second highest bidder, the auctioneer allows him to match the highest bid
(type II corruption).

The surplus that the corrupt coalition achieves is shared in fixed proportions
among its members: the auctioneer receives a share of 1 − α, and his partner in
corruption receives the remainder share α. α is common knowledge among all
bidders and the auctioneer. The auctioneer chooses the type of corruption that
maximizes his payoff.

Let b1 and b2 denote the two highest bids that are submitted. The total surplus
(for the auctioneer and the corrupt bidder) from type I corruption equals b1 − b2;
the total surplus from type II corruption involves an inference from the bid b2

to the underlying valuation. It is equal to the difference between the conditional
expected value of the valuation of the second highest bidder, E[V2 | b2 = β(V2)]
and the highest bid, b1, where β denotes the bid function. This introduces a sig-
nalling aspect into the bidding problem. We will consider only separating equi-
libria, i.e. equilibrium bid functions that are strict monotone increasing. There,
the auctioneer can draw an exact inference from an observed equilibrium bid
b from the image set of β to the underlying valuation, using the inference rule
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v = β−1(b). If he observes an off-equilibrium bid b > β(1), we assume that the
auctioneer infers v = 1, and if he observes any other off-equilibrium bid he in-
fers v = 0. Therefore, the auctioneer proposes type II corruption if and only if
b1−b2 < x2−b1, where x2 := β−1(b2); and, that proposal is accepted if and only if
v2 − b1 − (1 − α)(x2 − b1) > 0, which is assured, unless the second highest bidder
has bid considerably higher that the equilibrium bid (see Lemma 1 below).

Note that the auctioneer cannot completely bypass the highest bid. He must ei-
ther invite the highest bidder to lower his bid to the level of the second highest bid
(type I corruption) or the second highest bidder to match the highest bid (type II
corruption). The restriction to these two kinds of bid rigging is due to the fact that
the price paid by the winner, and sometimes even all bids, must be published after
the auction. This publication requirement serves the purpose to restrict corruption,
although it cannot prevent it altogether.9 Moreover, the auctioneer cannot allow
the second highest bidder to get away with paying less than the highest submitted
bid to the seller nor the highest bidder to pay less than the second highest bid
without involving more than one bidder into the corrupt coalition, which we rule
out as an option on the ground that the auctioneer wants to minimize the number
of illegal contacts.

Also note that the assumed ex post bid rigging is superior to ex ante manipula-
tion because it allows the auctioneer to minimize illegal contact and yet deal with
the most profitable partner in corruption.

4. The corrupt auctioneer’s decision problem

In the following we assume, as a working hypothesis, that a symmetric equi-
librium exists that exhibits a strict monotone increasing bid function β and bid
shading, β(v) < v.10 Such an equilibrium is a “separating equilibrium” since it
allows the auctioneer to infer the valuation that underlies an observed bid. Of
course, we verify that these working hypotheses confirm in the numerical solu-
tions reviewed in Section 8.

Consider a bidder who has submitted the bid β(x) where x may or may not dif-
fer from his true valuation v. Denote the highest and the second highest valuations

9Most procurement rules require publication of the winning bid (but not of losing bids). See,
for example, the Procurement Guidelines by the World Bank and the Asian Development Bank
(The World Bank, 2004a,b; The Asian Development Bank, 2002). We mention that our analysis
applies regardless of whether only the winning bid is published or all bids are published.

10This procedure allows us to find a monotone equilibrium; it does not assume monotonicity.
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of all other bidders by y1 and y2, respectively, and their associated equilibrium bids
by β(y1) and β(y2). In order to be able to state that bidder’s payoff function, we
elaborate the conditions under which that bidder is proposed either type I or type II
corruption, or is not proposed corruption and loses the auction.

First, suppose this bidder has made the highest bid, i.e. β(x) > β(y1). In that
case he is proposed type I corruption if the gain from proposing type I corruption
to him is at least as great as that from proposing type II corruption to the bidder
who submitted the second highest bid β(y1), β(x) − β(y1) ≥ y1 − β(x).

Denote the largest y1 for which this condition is met by φ(x),

φ(x) = sup
{
y1 ∈ [0, 1]

∣∣∣∣ y1 ≤ 2β(x) − β(y1)
}
. (1)

Then, the bidder who bids β(x) is proposed type I corruption if and only if

x > y1 and y1 ≤ φ(x). (2)

We call this the “proposal-condition for type I corruption”. Note that φ is an
increasing function.

Next, suppose β(x) is the second highest bid, β(y2) < β(x) < β(y1), which
implies y2 < x < y1. The second highest bidder is proposed type II corruption if
x − β(y1) > β(y1) − β(x). Denote the “largest” y1 that satisfies this condition by
ψ(x),

ψ(x) := sup
{
y1 ∈ [0, 1]

∣∣∣∣ x − β(y1) > β(y1) − β(x)
}

=

β−1
(

x+β(x)
2

)
if (x + β(x))/2 < β(1),

1 if (x + β(x))/2 ≥ β(1).

(3)

A bidder who bids β(x) is proposed type II corruption if and only if

y2 < x < y1 and y1 < ψ(x). (4)

We call this the “proposal-condition for type II corruption”. Note that ψ is an
increasing function.

Figure 1 illustrates the proposal-conditions (2) and (4).

5. Bidders’ decision to accept or reject corruption

A bidder who is proposed type I corruption always accepts since being allowed
to lower that bid is always profitable. We will now show that if type II corruption is
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x is not
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iff y2 < x

x is not
offered corruption

x

Figure 1: Regions where type I or type II corruption is proposed to bidder who bids β(x).

proposed, that proposal is also accepted, as long as the bidder’s stated valuation x
is close to his true valuation v. We also explain what happens for larger deviations
of x from v.

Consider a bidder who has made a bid β(x) where x may differ from his val-
uation v. If he is proposed type II corruption (which occurs if condition (4) is
satisfied), the auctioneer demands a transfer of (1 − α)(x − β(y1)). Therefore, that
bidder accepts if and only if

v − β(y1) − (1 − α)(x − β(y1)) > 0, resp.

y1 < ψ̃(v, x) := β−1
(
v − (1 − α)x

α

)
.

(5)

We call this the acceptance-condition for type II corruption. Note that ψ̃ is a
decreasing function of x.

Lemma 1. Suppose x is in a sufficiently small neighborhood of v, then the pro-
posal of type II corruption implies acceptance, i.e. (4) =⇒ (5).

Proof: Step 1: Suppose x = v. Then the acceptance condition, (5), simplifies to
α(v − β(y1)) > 0, which is immediately implied by the proposal condition, (4).

Step 2: Let x := v + ε and define the function r as the product of the functions
that characterize the proposal and the acceptance condition, respectively,

r(ε) := ((v + ε − β(y1)) − (β(y1) − β(v + ε))) (v − β(y1) − (1 − α)(v + ε − β(y1))) .

If the proposal condition is satisfied for ε = 0, then by step 1, we know that
the acceptance condition is also satisfied, i.e. r(0) > 0. Furthermore, since r is
a continuous function, it is also positive in a neighborhood of 0. Hence, if the
proposal condition is satisfied for an ε in that neighborhood (which is equivalent
to the first factor of r being positive), then the acceptance condition (which is
captured by the second factor of r being positive) must also be satisfied. �
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Figure 2 depicts the combinations of y1 and x for which the bidder who bids
β(x) wins the auction. This requires first of all that x > y2. Moreover, below φ, in
the shaded area I, type I corruption is proposed and, of course, accepted. Above
the 45◦-line and below ψ, type II corruption is proposed. It is accepted, however,
only below ψ̃. Thus, type II corruption takes place in the shaded area II, . This
region is bounded from above by the function

ψ∗(v, x) := min{ψ(x),max{ψ̃(v, x), x}}. (6)
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Figure 2: Sets of (y1, x) where the bidder (v, x) is proposed corruption and either accepts or rejects.
The bold line depicts ψ∗(v, x) as defined in (6) as a function of x.

6. First-order conditions

We now characterize the equilibrium bid function for the case of n ≥ 3, and
separately for the somewhat special case n = 2.

The payoff of a bidder with valuation v who bids as if his valuation were x,
while all others bid the symmetric, strict monotone increasing equilibrium strategy
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β, is, for n ≥ 3,

U(v, x) :=
∫ φ(x)

0
(v − β(y) − (1 − α) (β(x) − β(y))) dG(y)

+

∫ ψ∗(v,x)

x

∫ x

0
(v − β(y) − (1 − α) (x − β(y))) fY2Y1(z, y)dzdy. (7)

The first integral is the region where the bidder wins with type I corruption. In
this region, his strongest competitor is sufficiently weak (y < φ(x)) so that the
auctioneer prefers to offer type I corruption to the highest bidder. The second part
is the region where the bidder wins through type II corruption. Two conditions
must be met for this to happen. The bid must be the second highest that has been
submitted (this is captured by the inner integral with z, the third highest valuation,
running from 0 to x), and the distance to the highest bid must not be too large (this
is the outer integral, with the highest valuation y running from x to ψ∗(v, x)).

Note that, using the joint density of the order statistics, Y1,Y2, fY2Y1(z, y), one
can simplify the second line of (7) using the fact that∫ x

0
fY2Y1(z, y)dz = (n − 1) f (y)F(x)n−2 = G′(x)

f (y)
f (x)

. (8)

When there are three or more bidders, a bidder is proposed type II corruption if
three conditions are met: first, his bid must be lower than the highest rival bid, but
second, not too much lower, and third, it must be higher than the second highest
rival bid. The third requirement is meaningless if there are only two bidders.
Therefore, if n = 2 the payoff function simplifies to

U(v, x) =

∫ φ(x)

0

(
v − β(y) − (1 − α)(β(x) − β(y))

)
dF(y)

+

∫ ψ∗(v,x)

x

(
v − β(y) − (1 − α)(x − β(y))

)
dF(y).

(9)

Inspection of (9) together with (8) and n = 2 reveals that (9) is just a special case
of (7).

The strategy β is a symmetric equilibrium if v = arg maxx U(v, x) for all v.
Using the first-order condition of this requirement (keeping in mind that ψ∗(v, x) =

12



ψ(x) for x in a neighborhood of v by Lemma 1), one obtains

0 = φ′(v)(v − (1 − α)β(v) − αβ(φ(v)))G′(φ(v))

− (1 − α)
(
β′(v)G(φ(v)) +

G′(v)
f (v)

(
F(ψ(v)) − F(v)

))
+ α(v − β(v))

G′(v)
f (v)

(
ψ′(v) f (ψ(v))

2
− f (v)

)
+ α(n − 1)(n − 2)F(v)n−3 f (v)

∫ ψ(v)

v
(v − β(y))dF(y).

(10)

7. Existence

Equation (10) is a delay differential equation. The theory of delay differential
equations assures the existence of a solution (Kuang, 1993, Theorem 2.1), but it
does not guarantee existence of a monotone solution.11 So it is not clear whether
our game has an equilibrium or not.

An analytical solution is available for α = 1. In this case, truthful bidding is
an equilibrium. To see why, note that φ(v) = v and ψ(v) = v if β(v) = v, by (1) and
(3), respectively. Use this fact, set α = 1, and check that β(v) = v solves (10).12

In general, however, (10) cannot be solved analytically. In the following we
establish a necessary condition that restricts the set of parameters for which a
monotone solution exists.

Suppose β is a solution of (10) for the uniform distribution, and let s := β′(0).
Consider the first-order Taylor approximation of β at 0. Then β(v) ≈ sv, φ(v) ≈

11β is not necessarily differentiable at some points. For instance, it may have a kink at the
smallest v where ψ(v) = 1, so both, left-hand and right-hand derivatives, exist, but do not coincide.
However, this does not cause any problem, because the derivative in the delay differential equation
is defined as the right-hand derivative.

12The statement is also valid if we take the limit of α: ∀v limα→1 β(v) = v. Observe that
φ(v) → v and ψ(v) → v as β(v) → v. Using these facts, one checks that β(v) = v solves (10) as
α→ 1. Similarly, ∀v limn→∞ β(v) = v. The argument is again very similar. Because φ(v)→ v and
ψ(v)→ v as β(v)→ v, and because limn→∞G(v) = 0 for all v < 1, β(v) = v solves (10) as n→ ∞.

13



2s/(1 + s), and ψ(v) ≈ (1 + s)/(2s) for v ≈ 0. Therefore, s solves the polynomial

h(s, α, n) :=
2s

1 + s

(
1 − (1 − α)s − αs

2s
1 + s

)
(n − 1)

(
2s

1 + s

)n−2

− (1 − α)s
(

2s
1 + s

)n−1

+ α(1 − s)(n − 1)
(
1 + s

4s
− 1

)
− (1 − α)(n − 1)

(
1 + s

2s
− 1

)
+ α(n − 1)(n − 2)

1 + s
2s
− 1 −

s
2

(1 + s
2s

)2

− 1
 .

(11)
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Figure 3: Roots of the polynomial (11) for various n.

Figure 3 plots combinations of s and α for which h(s, α, n) = 0. Notice that,
for given n, there is no real root in the unit interval if α is too small. Define
α∗(n) := inf {α : ∃s ∈ [0, 1] h(s, α, n) = 0 }. An equilibrium cannot exist if α <
α∗(n).
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8. Numerical analysis

Because (10) cannot be solved analytically in general, we analyze it with the
help of numerical methods. Throughout we assume uniformly distributed valua-
tions. We compute the equilibrium for various combinations of n and α. All the
details can be found in the technical appendix.

We also check numerically whether the solution, which by construction satis-
fies only the local best reply conditions, constitutes also a global best reply. In
standard auction problems this is typically achieved by showing that the pay-
off function U(v, x) is pseudo-concave in x. Unfortunately, pseudo-concavity
does not hold in the present problem. However, by computing the payoff func-
tion U(v, x) for all valuations v and all deviations x, we verify numerically that
the computed bid functions are indeed global best replies. The details are again
spelled out in the technical appendix.

The numerical analysis gives rise to five results, for which we will also provide
intuition, as far as possible.

The first result relates to the question of existence of an equilibrium. Of
course, numerical methods can never prove existence, because they give us an
approximate solution at best. And yet, the following result suggests that an equi-
librium does indeed exist as long as α is large enough.

Result 1. Numerical solutions are obtained with high accuracy if the share of the
surplus that goes to the winning bidder (α) is sufficiently large. Below a certain
threshold value of α, the precision deteriorates discontinuously. This suggests that
an equilibrium exists only for sufficiently large α.

In Table G.4 we report the numerical approximation error for various com-
binations of n and α. For n = 2, this error increases discontinuously when we
change α from 0.6101 to 0.6100. This suggests that the necessary condition
α ≥ α∗(2) = 0.6101 is also sufficient if n = 2. This is not true for larger n.
For instance, α∗(5) = 0.2667, yet we find numerical solutions of (10) with “small
error” only for α ≥ 0.4515. More precisely, the approximation error changes by
several orders of magnitude (from 10−18 to 10−5) when we change α from 0.4515
to 0.4514. We take this as evidence that an approximate equilibrium exists for the
former α, but fails for the latter.

Figure 4 depicts numerical solutions of the equilibrium bid functions.

Result 2. If α is reduced below 1, welfare decreases, the expected payoffs of the
auctioneer increases, and that of the seller decreases.
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Figure 4: Approximate equilibrium bid functions for the uniform distribution, for n = 2 (left panel)
and n = 5 (right panel) and various values for α.
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Figure 5: Equilibrium allocation for n = 2 and two different values of α. Bidder 1 wins in the
shaded regions, bidder 2 in the white regions.
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Table 1: Numerical accuracy: sum of squared errors, SSE =
∑

v∈G D(v)2, for various α and n.

n = 2 α SSE
0.9 4.40 × 10−22

0.8 2.23 × 10−17

0.7 9.51 × 10−15

0.6101 6.17 × 10−12
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6100 9.76 × 10−8

0.6 3.04 × 10−8

0.5 5.51 × 10−2

n = 5 α SSE
0.9 4.18 × 10−21

0.8 6.32 × 10−21

0.7 5.85 × 10−20

0.6 8.84 × 10−17

0.5 7.64 × 10−19

0.4515 2.55 × 10−18
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4514 1.24 × 10−5

0.4 2.11 × 10−1

n = 3 α SSE
0.9 3.82 × 10−28

0.8 4.39 × 10−25

0.7 9.73 × 10−24

0.6 2.15 × 10−24

0.5010 3.98 × 10−16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5009 5.73 × 10−9

0.5 1.00 × 10−1

n = 10 α SSE
0.9 2.23 × 10−19

0.8 9.75 × 10−18

0.7 6.07 × 10−18

0.6 4.15 × 10−17

0.5 1.25 × 10−16

0.4013 2.95 × 10−15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4012 8.74 × 10−10

0.4 2.17 × 10−5

Figure 5 depicts the equilibrium allocations in the state space for α = 0.8 and
for α = 0.6101 (the smallest α for which we have found a solution). Bidder 1 wins
the object in the shaded area; in the white area, bidder 2 is the winner. Efficiency
requires that bidder 1 wins if and only if he has the higher valuation, v1 > v2,
and vice versa. Therefore, for efficiency, the entire area below the 45◦-line should
be shaded, and the entire area above it should be white. Clearly, the equilibrium
allocation is not efficient. In both parameter cases, there is a white wedge in the
area below the 45◦-line that should be shaded (there, bidder 2 wins although he
has the lower valuation), and a shaded wedge in the area above the 45◦-line that
should be white (there, bidder 1 wins although he has the lower valuation). These
“wedges” indicate the presence of type II corruption which changes the allocation
by letting the second highest bidder win the auction.

Comparing the two figures for α = 0.6101 and α = 0.8 illustrates the second
fact that the two inefficiency “wedges” increase in size as α is lowered. The
intuition for this is as follows: type II corruption requires bid shading. If α is
close to one, the equilibrium bid function is close to truthful bidding, therefore
there is almost no room for type II corruption. As α is lowered, bids are shaded
more, and this, in turn, makes more room for type II corruption, by increasing
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the spread of valuations, v1 − v2, for which the auctioneer benefits the most from
allowing the second highest bidder to win.

We now compute the welfare loss (πloss) and the the expected equilibrium pay-
offs of the seller (πseller) and the auctioneer (πauc):

πauc := (1 − α)
∫ 1

0

(∫ φ(x)

0
(β(x) − β(y)) fX2X1(y, x)dy

+

∫ x

φ(x)
(y − β(x)) fX2X1(y, x)dy

)
dx,

(12)

πseller :=
∫ 1

0

(∫ φ(x)

0
β(y) fX2X1(y, x)dy +

∫ x

φ(x)
β(x) fX2X1(y, x)dy

)
dx, (13)

πloss :=
∫ 1

0

∫ x

φ(x)
(x − y) fX2X1(y, x)dydx, (14)

where fX2X1(y, x) := n(n − 1)F(y)n−2 f (y) f (x), y ≤ x, denotes the joint density of
the highest and second highest of a sample of n valuations.

Table 2 summarizes how welfare and payoffs change compared to the equi-
librium in the absence of corruption. Not surprisingly, as α is reduced, the auc-
tioneer’s expected profit increases, expected welfare diminishes, and the seller’s
expected profit decreases as well.

Result 3. If α is reduced below 1, not only the auctioneer’s but also bidders’
expected payoffs increase. Paradoxically, both parties benefit from a ‘stronger
auctioneer’ because they both benefit more when the share of the surplus that
goes to the auctioneer is increased. This indicates that corruption is hard to fight
as both involved parties benefit from it.

The surprising fact that bidders’ payoffs increase when the share that goes to
the auctioneer is increased, can be explained from Myerson’s revenue equivalence
theorem together with the observation that the allocation rule is more distorted the
smaller α is.

A bidder with valuation v wins the first-price auction with probability Hα(v) :=
G(ψ(v))−G(v)+G(φ(v)). This differs from the efficient allocation rule G(v), which
is the cause of inefficiency.

In all our computations, Hα is a monotone increasing function. Therefore, by
Myerson (1981, Lemma 2), bidders’ expected payoff is

U(v, v) =

∫ v

0
Hα(y)dy =

∫ v

0
(G(ψ(v)) −G(v) + G(φ(v)))dy, (15)
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Table 2: Changes of expected welfare and payoffs due to corruption compared to no corruption.

n = 2 α welfare auctioneer seller
0.9 −0.001 (−0.2%) +0.030 −0.032 (−9.6%)
0.8 −0.005 (−0.7%) +0.054 −0.063 (−18.9%)
0.7 −0.011 (−1.6%) +0.074 −0.097 (−29.0%)

0.6101 −0.019 (−2.9%) +0.095 −0.134 (−40.1%)

n = 3 α welfare auctioneer seller
0.9 −0.001 (−0.1%) +0.024 −0.025 (−5.0%)
0.8 −0.002 (−0.3%) +0.045 −0.050 (−10.0%)
0.7 −0.006 (−0.8%) +0.065 −0.077 (−15.4%)
0.6 −0.011 (−1.5%) +0.086 −0.109 (−21.8%)

0.5010 −0.019 (−2.5%) +0.112 −0.150 (−30.0%)

n = 5 α welfare auctioneer seller
0.9 −0.000 (−0.0%) +0.016 −0.017 (−2.5%)
0.8 −0.001 (−0.2%) +0.032 −0.035 (−5.2%)
0.7 −0.003 (−0.4%) +0.047 −0.054 (−8.1%)
0.6 −0.006 (−0.8%) +0.063 −0.076 (−11.4%)
0.5 −0.011 (−1.3%) +0.082 −0.104 (−15.6%)

0.4515 −0.013 (−1.6%) +0.094 −0.120 (−18.0%)

n = 10 α welfare auctioneer seller
0.9 −0.000 (−0.0%) +0.009 −0.010 (−1.2%)
0.8 −0.001 (−0.1%) +0.018 −0.021 (−2.6%)
0.7 −0.002 (−0.2%) +0.026 −0.032 (−3.9%)
0.6 −0.003 (−0.4%) +0.036 −0.045 (−5.4%)
0.5 −0.005 (−0.6%) +0.047 −0.060 (−7.3%)

0.4013 −0.008 (−0.9%) +0.062 −0.080 (−9.7%)

since by construction U(0, 0) = 0. Moreover, we find that for α < 1, G is a mean
preserving spread of Hα, and for α′ < α, Hα is a mean preserving spread of Hα′ .
This is illustrated in Figure 6, where we plot G and H for two values of α and
n = 2. A mean preserving spread implies second order stochastic dominance.
Thus, for α′ < α < 1,∫ v

0
G(y)dy ≤

∫ v

0
Hα(y)dy ≤

∫ v

0
Hα′(y)dy

for all v, with strict inequality for all v < {0, 1}. This proves that bidders’ equilib-
rium expected payoff, U(v, v), is decreasing in α.

Of course, we know from result 1 that α cannot be reduced arbitrarily, because
existence of a separating equilibrium breaks down if α is too small.
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Figure 6: Left panel: winning probability of an agent as function of his valuation if there are two
bidders (n = 2), in the efficient allocation (G, dotted line) and in the auction with corruption (H);
α is 0.6101 (solid line) or 0.8 (dashed line), respectively. Right panel: expected gain of bidders
from corruption as function of their valuation.

Result 4. If the number of bidders is increased, welfare improves, the expected
payoff of the seller increases, and the expected payoffs of the auctioneer and bid-
ders decrease.

The fact that welfare and the seller’s payoff improve and that the auctioneer
looses from more competition can be seen from Table 2. The numerical compu-
tations also confirm that bidders’ payoff decreases with competition. While the
result concerning welfare, the seller’s payoff, and bidders’ payoff may be as ex-
pected, we have no compelling intuition why the auctioneer should loose from
more intense competition among bidders. This may be an artefact of the uniform
distribution.

Result 5. The seller’s expected payoff is substantially smaller in a model that
allows for both types of corruption compared to a model that allows only for
type I corruption.

Table 3 compares the effect of corruption in our model to the alternative model
that only considers type I corruption (as in Lengwiler and Wolfstetter (2000) and
Menezes and Monteiro (2006)). Defining K(x) := G(x)

1
1−α , one can show that
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Table 3: Expected payoff of the seller and expected reduction of this payoff due to corruption. The
table compares the effect in a simpler model that considers only type I corruption with the effect
in our model that allows for both types of corruption.

α type I corruption only type I & type II corruption
n = 2 seller’s expected payoff without corruption is 0.333

0.9 0.303 (−9.1%) 0.301 (−9.6%)
0.8 0.278 (−16.7%) 0.270 (−18.9%)
0.7 0.256 (−23.1%) 0.236 (−29.0%)

0.6101 0.240 (−28.1%) 0.199 (−40.1%)

n = 3 seller’s expected payoff without corruption is 0.500
0.9 0.476 (−4.8%) 0.475 (−5.0%)
0.8 0.455 (−9.1%) 0.450 (−10.0%)
0.7 0.435 (−13.0%) 0.423 (−15.4%)
0.6 0.417 (−16.7%) 0.391 (−21.8%)

0.5010 0.400 (−20.0%) 0.350 (−30.0%)

n = 5 seller’s expected payoff without corruption is 0.667
0.9 0.650 (−2.4%) 0.650 (−2.5%)
0.8 0.635 (−4.8%) 0.632 (−5.2%)
0.7 0.620 (−7.0%) 0.613 (−8.1%)
0.6 0.606 (−9.1%) 0.591 (−11.4%)
0.5 0.593 (−11.1%) 0.563 (−15.6%)

0.4515 0.586 (−12.1%) 0.547 (−18.0%)

n = 10 seller’s expected payoff without corruption is 0.818
0.9 0.809 (−1.1%) 0.808 (−1.2%)
0.8 0.800 (−2.2%) 0.797 (−2.6%)
0.7 0.792 (−3.2%) 0.786 (−3.9%)
0.6 0.783 (−4.3%) 0.773 (−5.4%)
0.5 0.775 (−5.3%) 0.758 (−7.3%)

0.4013 0.767 (−6.2%) 0.738 (−9.7%)

β(v) = v −
∫ v

0
K(y)
K(v)dy solves this auction game. Compared to the model that con-

siders only type I corruption, we see that the interplay between type I and type II
corruption has a significant impact. First of all, it gives rise to inefficiency, which
cannot occur when only type I corruption is possible, because this only affects the
pricing rule but not the allocation rule. Second, the seller’s loss due to corruption
is significantly higher when one allows for both types of corruption. This is true
in particular for cases with only few bidders. For instance, suppose that n = 3,
then the seller’s expected payoff without corruption is 0.5. As an example and
guide for reading the table, suppose further that only type I corruption is possible
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and α = 0.6. Then the seller’s expected payoff is 0.417, so the seller loses 16.7%
of the payoff that he would have achieved without corruption. If type I and type II
corruption are possible, however, the seller’s expected payoff is only 0.308, and
the seller loses 21.8% of his payoff without corruption.

9. Conclusion

We have examined how bidding behavior, efficiency, and the allocation of pay-
offs is affected by corruption in a first-price auction with risk-neutral bidders and
independent private values. Corruption here means the ability of the auctioneer
(who is an agent of the seller) to make a side deal with one bidder at the expense
of the seller. The analysis is considerably complicated by the fact that the auction-
eer has a choice with which bidder to initiate corruption. He can either invite the
highest bidder to lower his bid (we call this type I corruption) or he can invite the
second highest bidder to raise his bid (type II corruption).

We find: (1) In a symmetric, monotone equilibrium the object is not always
awarded to the bidder who has the highest valuation. Inefficiency occurs whenever
the auctioneer allows the second highest bidder to match the highest bid (type II
corruption). (2) The associated welfare loss is a decreasing function of the number
of bidders, and an increasing function of the share claimed by the corrupt auction-
eer. (3) The expected gains from corruption are also decreasing in the number
of bidders. Surprisingly, both parties gain more when the share claimed by the
auctioneer is increased (up to the limit when a pure strategy equilibrium fails to
exist). This suggests that even bidders prefer being matched with a strong corrupt
auctioneer who claims a large share. (4) Only the auctioneer and the winning bid-
der have hard evidence of the corrupt activity, yet both benefit from corruption.
This contributes to explain why fighting corruption is intrinsically difficult.

Our analysis rests on the assumption that the corrupt auctioneer contemplates
only one illegal contact. We justify this with the fact that bid rigging schemes
that involve several bidders are subject to increased risk of detection, because
every transfer leaves some hard evidence that may be traced. Nevertheless, a
more general model would allow the auctioneer to optimize not only the type of
corruption, but also the size of the corrupt coalition.

Another limitation concerns the existence of a monotone symmetric equilib-
rium bid function. Intuitively, there are two reasons that may prevent existence
of such an equilibrium: first, bidders are not unambiguously interested in mak-
ing the highest bid, and second, because the corrupt auctioneer uses bids to infer
the unknown valuation of the second highest bidder, bidders have an interest in
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sending a distorted signal. The issue is similar to the inference problem in auc-
tions with resale, where existence of a monotone symmetric equilibrium is not
generally assured (see Haile (2003) and the literature reviewed there). In fact, we
have proved that a monotone equilibrium cannot exist in our model if the share
of the auctioneer is too large (α is too small). Yet, for small enough shares of
the auctioneer (large enough α), we are able to produce highly accurate numerical
approximations. Depending on the parameters, the maximum absolute deviation
of the delay-differential equation (10) from zero is always smaller than 4 × 10−6,
and typically in the neighborhood of 10−10 (see the technical appendix for details).
Although invoking numerical solution methods does not prove existence, the low
error suggests that our numerical solution indeed approximates the true solution.
Alternatively, one may argue that we have at least found an approximate equilib-
rium in which bidders who play according to our numerical solution would make
only extremely small mistakes.

The main policy implication of our analysis is that fighting corruption is para-
mount because, due to presence of type II corruption, it does not only redistribute
rents but also distorts efficiency. Our analysis also suggests that accumulating
hard evidence about corruption may be difficult in a sealed bid auction because all
parties that own hard evidence profit from the corrupt activity. One way to make
it easier to collect information about corruption is to employ an open bidding
format. However, open auctions facilitate collusion among bidders, which may
make this cure worse than the disease.

One way to deter the kind of corruption that we have analyzed here is to give
the auctioneer an incentive contract that pays him a share of the profit. This makes
corruption less attractive or may even remove it completely. In fact, we observe
such incentive schemes in private markets where auction houses compete for sell-
ers.13

Moreover, one can use technology to make bid rigging impossible. Computer
scientists have developed encryption and time stamping technologies that con-
tribute to prevent bid rigging (see Parkes et al., 2007). These methods should be
applied in auctions and procurements, both in the private and public sector and
international organizations.

However, when the seller is a government or a bureaucratic entity, rather than

13For example, for live auctions at Sotheby’s salesrooms the fees are a non-linear function of
the hammer price. The rate is 25% on the first $50.000, 20% on the exceeding amount up to
$1.000.000, and 12% on the remaining amount, see http://www.sothebys.com/help/faq/
faq_duringauction.html.
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a residual claimant, these solutions are often ignored due to a lack of proper gov-
ernance.
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Technical Appendix

Appendix A. Numerical solution: the problem

As explained in the paper, we want to find the solution to

D(v) := φ′(v)(v − (1 − α)β(v) − αβ(φ(v)))(n − 1)φ(v)n−2

− (1 − α)
(
β′(v)φ(v)n−1 + (n − 1)vn−2(ψ(v) − v)

)
+ α(v − β(v))(n − 1)vn−2

(
ψ′(v)

2
− 1

)
+ α(n − 1)(n − 2)vn−3

((
ψ(v) − v

)
v −

∫ ψ(v)

v
β(y)dy

)
= 0. (A.1)

The evaluation of (A.1) is not trivial because we first need to determine ψ(v) and
φ(v), which depend on β. ψ involves the inverse of β, so we will have to make
sure that our candidate β is always invertible. φ demands a little more. It is the
solution of a fixed point problem,

φ(v) + β(φ(v)) − 2β(v) = 0. (A.2)

Because the left-hand side of this equation is monotonic in φ(v), and is negative
if φ(v) = 0, and positive if φ(v) = v (as long as there is bid shading, β(v) < v),
we can use the bi-section method and determine φ(v) to an arbitrary precision.
The required precision is determined in the code by phiEps and set by default to
machine precision. For the remaining, we draw heavily from the splendid book
by Heath (2002).

Appendix B. Root finding methods

To make problem (A.1) suitable for numerical analysis we search for approxi-
mate solutions within the class of strictly increasing, continuous, piecewise linear
functions that satisfy the boundary condition β(0) = 0. Let G := {0, 1/g, . . . , (g −
1)/g, 1}, for some g ∈ N, be a uniform grid on the unit interval. A piecewise
linear function is defined by the numbers {β(v) : v ∈ G}. This transforms the
infinite-dimensional problem (A.1) into a g-dimensional problem. You can select
the fineness of the grid on valuation space by changing the constant g in the source
code.
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All iterative procedures start from some initial “guess” (more on this later).
Let β0 be the initial bid function, and β1, β2, . . . denote the bid functions along an
iteration. A root finding algorithm is a rule that prescribes how to get from βi to
βi+1. The idea is to do this in such a way that the sequence of βi approaches the
true solution in the process. We have implemented several standard methods for
such problems. You can select the method by setting the switch rootmethod to a
value between 0 and 3.

Appendix B.1. The Gauss-Newton method
A standard method for moving from βi to βi+1 is the Gauss-Newton method.

It involves the Jacobian of Di with respect βi, which we denote with Ji. To ap-
proximately compute the components of the Jacobian, for each vk := k/g ∈ G,
we compute Di at two points, namely β+

i and β−i , given by β+
i (vk) := βi(vk) + δ,

β−i (vk) := βi(vk) − δ, and β+
i (v) = β−i (v) = βi(v) for all v , vk.14 The Jacobian is

then approximately given by

J ≈


D1(β+

1 )−D1(β−1 )
2δ · · ·

D1(β+
g )−D1(β−g )

2δ
...

. . .
...

Dg(β+
1 )−Dg(β−1 )

2δ · · ·
Dg(β+

g )−Dg(β−g )
2δ

 .
The iteration proceeds according to the following rule

βi 7→ βi+1 := βi − τiJ−1
i Di. (B.1)

τi is a positive number called the step size. As explained later, we optimize over
the step size τi.

Appendix B.2. Steepest descent method
Another standard method is the method of steepest descent. Compute the sum

of squared errors,

SSEi :=
1
2

∑
v∈G

Di(v)2,

(the division by 2 is a normalization that will make sense later). We aim at
minimizing SSE. To that avail we compute the gradient of SSE with respect to

14δ is called diffDelta in the program, and is equal to diffDelta = 1E-10 by default; you
are free to change this parameter.
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{βi(v) : v ∈ G}. As before, we approximate the gradient by computing a discrete
difference of the components of the bid function (±δ): we compute SSE+

i (βi, v) as
the SSE that would result if βi(v) 7→ βi(v) + δ for a given v ∈ G, and SSE−i (βi, v) as
the SSE that would result if βi(v) 7→ βi(v) − δ. The gradient is then approximately
equal to

∇SSE(βi) :=
(
SSE+

i (βi, v) − SSE−i (βi, v)
2δ

)
v∈G

.

With this information, we can iterate according to the following rule

βi 7→ βi+1 := βi − τi ∇SSE(βi). (B.2)

We move here into the direction in which SSE decreases the fastest locally, hence
the name of the method. τi is again the step size, which we optimize.

Appendix B.3. A hybrid method
The Gauss-Newton method finds the minimum of a quadratic function in one

iteration. For non-quadratic problems, the initial point has to be sufficiently close
to the solution. If not, the method might not converge at all. So this method is fast
if we are close to the solution, but quite demanding in terms of choice of starting
point.

Compared to the Gauss-Newton method, the steepest descent method is slow.
Like the Gauss-Newton method, it exhibits global convergence for quadratic prob-
lems (though not in one iteration step). The advantage of steepest descent over the
Gauss-Newton method is that steepest descent is much less demanding with re-
spect to the starting point. Even if we are far from the solution, the method will
point into more or less the right direction15 and initially converge at a decent speed.
Only when we get close to the solution does convergence speed deteriorate.

These observations suggest a hybrid method, that combines the advantages of
the steepest descent method in the early phase of the process, and later switches
to the Gauss-Newton method. We switch from steepest descent to Gauss-Newton
when there has been no significant improvement (switchEps = 1E-12) over suf-
ficiently many consecutive iterations (switchKeep = 5).

Appendix B.4. The Levenberg-Marquardt method
This method is similar in spirit to the hybrid method we have just discussed,

but instead of completely switching from one method to the other, it moves more

15Of course, we might get stuck on a local minimum if SSE is not unimodal.
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gradually between the two. The iteration rule is given by

βi 7→ βi+1 := βi − τi ((1 − λi)JT
i Ji + λiI)−1JT

i Di, λi ∈ (0, 1). (B.3)

Note that (B.3) is a convex combination between the Gauss-Newton rule (B.1),
when λi = 0, and the steepest descent rule (B.2), when λi = 1.16

The strategy of the method is to dynamically change λi in a smart fashion.
Define µi := λi(1 − λi)−1. We start from some initial µ0 (muInit = 1E-3). If the
SSE improves from one iteration to the next, we decrease µ by dividing it by some
factor m > 0 (in the code, m is called muFactor = 10), thus moving closer to the
Gauss-Newton method; if the SSE deteriorates we increase µi by multiplying it
with m, thus moving into the direction of the steepest descent method.

We slightly vary this strategy because we have found that it works better. We
decide about increasing or decreasing µi not by comparing the SSE from one
iteration to the next. Instead, we decrease µi only if the current SSE is better
than the best SSE that has been encountered so far during the whole process; we
increase it otherwise.

Appendix C. Optimizing the step size

Optimization of the step size is quite important, particularly as long as we are
far from the solution. Moreover, our root finding methods might suggest a step
that would make the next bid function βi+1 locally decreasing or that might violate
weak bid shading. Non-monotonicity in particular would cause trouble in further
calculations by making the bid function not invertible. We proceed as follows: in
each iteration step, we first determine the maxmimum size of τ that still guarantees
weak monotonicity and bid shading; call this step size τ∗. Then we optimize by
searching for a step τ in the interval (0, τ∗) which minimizes SSE.17

A good algorithm for finding the minimum along a line if the function is
unimodal is the golden section search. You can select this option by setting
taumethod = 1 along with the required precision (tauEps).

Because we cannot be sure that SSE is unimodal in our search direction, we
have also implemented a more expensive procedure (taumethod = 0), which we

16Note that ∇SSE = JT D. Here is where the division by 2 in the definition of SSE comes in.
17If this requirement does not put a constraint on the step size, we allow τ∗ to be at most equal

to GRANDMAXTAU = 2.0, so the bid function is changed by at most twice as much as the step size
suggested by the chosen method.
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call “brute force”: we compute SSE for step sizes τ ∈ {τ∗ s S −1 : s = 1, . . . S − 1},
and we select the best one. S is called tausteps in the program. Note that we
restrict 0 < τ∗S −1 ≤ τ ≤ τ∗(S − 1)S −1 < τ∗. τ = 0 would immediately lead
to an infinite loop; the algorithm would be stuck. τ = τ∗ is very likely to lead
to a locally flat bid function. This makes inverting the bid function impossible,
and also raises the possibility that τ∗ would become zero in the next iteration step.
The algorithm would again be stuck. Yet, the strategy of disallowing extreme step
sizes is only partially successful. It happens on rare occasions that τ∗ becomes
smaller than machine precision. The algorithm stops in such a case.

If we are close to the solution, it can be that the smallest step is still too large
so that the algorithm would overshoot. If the SSE is larger even with the smallest
allowed step, we re-optimize the step size by evaluating the SSE at steps τ ∈
{τ∗ s S −k : s = 1, . . . S − 1}, with k = 2. We keep increasing k until the iteration
leads to an improvement of the SSE. However, in no case do we allow τ to become
smaller than τ∗SSE/(g+1). This limit allows smaller steps once the error is small,
but avoids getting stuck on very small steps as long as the error is still large.

Appendix D. Finding an initial guess

Appendix D.1. Starting from a linear bid function
Because we cannot hope to have global convergence, the choice of the initial

bid function β0 has to be done with care, and we should try to start from a point
which is as close as possible to the solution. A simple idea is to start from the
solution of a simpler problem which we can solve explicitly. We start from the
solution of the restricted first-price auction in which only type I corruption is
possible. One can show that

β(v) =

v −
∫ v

0
K(y)
K(v)dy = EY1∼K [Y1 | Y1 < v] , if α < 1,

v, if α = 1,
(D.1)

K(y) := F(y)
n−1
1−α . (D.2)

is the solution to this simpler problem. The rationale for starting from this point
is the hope that adding the possibility of type II corruption does not alter the
solution in a too extreme fashion. With the uniform distribution of valuations, the
bid function of the restricted game is linear and given by

β0(v) :=
n − 1
n − α

v. (D.3)

31



More generally, you can choose to start from any linear bid function by setting
initmethod = 0. The slope of this initial bid function is set in the variable
slope, which is by default set to the slope defined in (D.3).

Appendix D.2. Starting from a non-linear bid function
One could also start from a non-linear bid function. To do that, you need to

write an alternative to the procedure InitLinear, maybe along these lines:

private static void InitPower()
{

Console.WriteLine(">>> Filling in power bid function " +
"as an initial guess...");

for (int j=1; j<=g; j++)
betavec[j, 0] = slope * Math.Pow(val(j),exponent);

compute();
}

You will have to declare the constant exponent in the beginning of the code
somewhere (preferably in the neighborhood of the declaration of slope), and
also change a part of the Main() method as follows,

switch (initmethod)
{

case 0:
InitLinear();
break;

case 1:
RunGridSearch();
OutputResult();
break;

case 2:
InitPower();
break;

}

Setting initmethod = 2 would then select the power bid function as the starting
point.

Appendix D.3. Grid search
An alternative to a fixed initial guess is to run a grid search (select initmethod

= 1). In a grid search, we determine the RMSE of a large number of bid functions
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and select the one with the smallest RMSE as the starting point. More precisely,
for the first dimension i = 1 (that is, v1 = 1/g), we select Q equally spaced bids b1

strictly between 0 and v1 (Q is called GridSearchSteps in the code). For each of
these bids, we then select Q bids for the second dimension, again equally spaced,
and strictly between b1 and v2, in order to observe strictly monotonicity and bid
shading. We do this through all g dimensions. This gives rise to Qg bid functions.
It is obvious that with a reasonably fine grid on the valuation space, say g = 50,
this kind of grid search is not feasible because already with Q = 2 we would have
to evaluate more than 1015 bid functions. So grid search is feasible only if we
work with a coarse grid on the valuations, at least initially.

Appendix D.4. A variation: progressively finer grid method
Since it is important to start from an initial bid functions which is close to the

final solution, and it is easier to find the root for a problem with less dimensions
rather than more, one can follow a strategy of starting with a relatively coarse
grid on the valuation space, and making the grid progressively finer. To consider
an extreme example, suppose we start with g = 1. This amounts to searching
for a solution within the class of linear functions. Apply a root finding method
as described before. Then subdivide the grid on the valuation space, say by 4.
So now g = 4 and we linearly interpolate the bid function for the new points in
the valuation grid. We then again apply one of the root finding methods, and
again subdivide the valuation space. We keep on doing this until we reach a
reasonable fineness of the grid on the valuation space. This method has potentially
two advantages. Firstly, it allows us to start with a very coarse grid, making the
grid search a feasible choice for the initial guess. Secondly, after each subdivision
of the valuation space, we start from a bid function which should be rather close
to the solution for the new valuation grid.

In the code, the progressively finer grid method is controlled by two para-
meters: NbSubdivisions is the number of rounds in which the valuation grid
is made progressively finer, and SubdivisionFactor is the factor by which it
is made finer in each round. Thus, if we start with a grid of g = 3, which we
subdivide twice with a factor of four, we end up with 3 × 42 = 48 points in the
valuation space. Setting NbSubdivisions = 0 turns off the progressively finer
grid method.
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Appendix E. The results

For most cases we do not use the progressively finer grid method (NbSubdivisions
= 0). Instead we run a rather fine grid on the valuation space to begin with (g =
200). This rules out the grid search for the starting point (initmethod = 0), and
we use a linear initial function following (D.3).

We find that the Levenberg-Marquardt method turns out to be the best choice
for our problem. An iteration step is quite slow, but it makes up for this drawback
with fast convergence. If there is an equilibrium, it finds it within a small number
of iterations. The steepest descent method works also, although convergence is
very slow and it does not seem to generate the same amount of precision.

For the optimization of the step size, we find that golden section search works
well, so we use it throughout. The brute force method often works too, but is
somewhat inferior.18

Finally, we stop the iteration if no improvement has occurred for sufficiently
many (keepiter = 20) iterations, or after a maximum of maxiter = 100 itera-
tions. We then report the iteration step with the smallest SSE that we have detected
so far.

Figure G.7 depicts the approximate equilibrium bid functions; Table G.4 re-
ports the precision we achieve with these computations. For each n we have in-
vestigated, there is a borderline α at which the SSE increases dramatically when
we increase α by just 0.0001 beyond this limit. These borderline αs are identified
in the table.

In addition, we have found that convergence is tricky in some cases with rela-
tively large values of α as well. The examples with n = 5 and n = 10, respectively,
and α = 0.9 did not converge well. We have found, however, that this is no in-
dication of a lack of existence for large α, but is due to the imprecision imposed
by too coarse a grid. It seems that the equilibrium bid function is not well enough
captured in these cases by a piecewise linear function with only 200 vertices be-
cause it exhibits too large a curvature. In these two cases we have therefore used
the progressively finer grid method and have doubled the grid in one step from
200 to 400 points (NbSubdivisions = 1, SubdivisionFactor = 2). This was
sufficient to achieve low approximation errors.

18The parameters are tauEps = 1E-2 for the golden section search and tausteps = 10 for
the brute force method. Brute force step size optimization often seems to work more harmoniously
with the steepest descent root finding method, but since we do not use steepest descent, we have
also no need for brute force step size optimization.
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Appendix F. Testing for global optimality

Because the differential equation (A.1) is only a local condition for optimal-
ity we must check whether the solution of (A.1) indeed constitutes a global best
reply against the bid function β. In other words, one needs to check if v ∈
arg max U(v, x). Using the uniform distribution, the expected payoff function that
is developed in the paper simplifies to

U(v, x) = φ(x)n−1(v − (1 − α)β(x)) − α(n − 1)
∫ φ(x)

0
yn−2β(y)dy

+ (ψ∗(v, x) − x)(n − 1)xn−2(v − (1 − α)x) − α(n − 1)xn−2
∫ ψ∗(v,x)

x
β(y)dy. (F.1)

We compute U(v, x) for each valuation in the grid v ∈ G, and for all possible
deviations x ∈ G, using the numerical solutions we have found for β, φ, and ψ∗.

The numerical solutions are only approximate. Because we need to integrate
numerically to compute (F.1), small errors may accumulate. Moreover, the payoff

function is naturally flat close to the maximum. For these reasons, it is easily
possible that occasionally x∗ := arg maxx U(v, x) deviates from v. As long as
these deviations, |x∗ − v|, are small and, more importantly, the implied maximum
is close to the payoff one receives from bidding according to the payoff function
β, i.e. U(v, x∗) −U(v, v) is small, one should not suspect the numerical solution to
be grossly wrong in the sense of mistaking a local optimum for a global one.

Figure G.8 shows a typical example of a plot of v against x∗. Ideally, the graph
would be on the 45◦-line. One can see some small deviations in particular at high
values of v. However, the payoff function has very little curvature in this region,
so that small deviations of the maximizer x∗ from the true valuation v are to be
expected. Altogether, these deviations are minor, and we find no evidence that
large deviations from the computed bid functions can improve bidders’ payoffs.

A typical example of a payoff function is depicted in the left panel of Fig-
ure G.9. There, one can see clearly that the equilibrium bid is the global maxi-
mizer for v = 0.5.

The worst example we found is the case of n = 10, α = 0.4013, and v = 0.485,
which is depicted in the right panel of Figure G.9. There, we can see that the
payoff function has very little curvature close to the maximum. For this reason, a
small numerical approximation error in the computation of the bid function β or
in the computation of the payoff function U (which involves numeric integration)
can lead to the conclusion that x∗ , v. Yet, even in this case, the difference
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between the computed maxima, U(v, x∗) − U(v, v), is small, so that this fact does
not constitute evidence that v is not a global maximizer.

Appendix G. The program

The program is implemented in C]. Free IDEs for this language can be down-
loaded from http://www.microsoft.com/express/Downloads/ or http://
www.icsharpcode.net/OpenSource/SD/. A ZIP archive containing the pro-
gram and computed results is available for download from our websites. The
archive contains a file called Main.cs, which is the C] source code, as well as
plain text files which are copies of the output produced by the program. The nam-
ing conventions of these files are as follows: the file with name x-0y.txt contains
the computation for n = x and α = 0.y. All parameters and choices of methods
are specified at the beginning of the source code (Table G.5), so you do not need
to modify the program itself when making your choices.
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Figures of the Technical Appendix
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α = 0.4013

Figure G.7: Approximate equilibrium bid functions for the first-price auction with type I and
type II corruption, for n ∈ {2, 3, 5, 10} and α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and, for each n, for the
smallest α for which we found a solution.
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Table G.4: Precision of the computations.

n = 2 α # iterations SSE RMSE max absolute error mean error
0.9 32 4.40 × 10−22 2.09 × 10−12 2.04 × 10−11 −1.43 × 10−16

0.8 34 2.23 × 10−17 4.71 × 10−10 3.94 × 10−9 +8.86 × 10−14

0.7 100 9.51 × 10−15 9.73 × 10−9 1.06 × 10−7 +6.23 × 10−11

0.6101 43 6.17 × 10−12 2.48 × 10−7 3.50 × 10−6 −1.78 × 10−8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6100 25 9.76 × 10−8 3.12 × 10−5 2.96 × 10−4 −7.41 × 10−6

0.6 29 3.04 × 10−8 1.74 × 10−5 1.84 × 10−4 −2.06 × 10−6

0.5 61 5.51 × 10−2 2.34 × 10−2 6.33 × 10−2 −1.95 × 10−2

n = 3 α # iterations SSE RMSE max absolute error mean error
0.9 46 3.82 × 10−28 1.95 × 10−15 1.80 × 10−14 +6.49 × 10−17

0.8 31 4.39 × 10−25 6.61 × 10−14 3.72 × 10−13 −1.97 × 10−16

0.7 50 9.73 × 10−24 3.11 × 10−13 2.77 × 10−12 −2.28 × 10−16

0.6 37 2.15 × 10−24 1.46 × 10−13 1.38 × 10−12 +2.20 × 10−15

0.5010 50 3.98 × 10−16 1.99 × 10−9 2.82 × 10−8 −1.37 × 10−10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5009 58 5.73 × 10−9 7.55 × 10−6 6.58 × 10−5 +3.13 × 10−7

0.5 25 1.00 × 10−1 3.15 × 10−2 2.22 × 10−1 −6.96 × 10−3

n = 5 α # iterations SSE RMSE max absolute error mean error
∗ 0.9 19; 100 4.18 × 10−21 4.57 × 10−12 5.76 × 10−11 −4.96 × 10−13

0.8 99 6.32 × 10−21 7.93 × 10−12 1.11 × 10−10 +4.07 × 10−13

0.7 98 5.85 × 10−20 2.41 × 10−11 2.59 × 10−10 −2.41 × 10−12

0.6 16 8.84 × 10−17 9.38 × 10−10 7.90 × 10−9 −1.15 × 10−10

0.5 99 7.64 × 10−19 8.72 × 10−11 8.17 × 10−10 −5.11 × 10−12

0.4515 98 2.55 × 10−18 1.59 × 10−10 1.91 × 10−9 −1.93 × 10−11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4514 18 1.24 × 10−5 3.51 × 10−4 4.47 × 10−3 +9.85 × 10−6

0.4 13 2.11 × 10−1 4.59 × 10−2 2.30 × 10−1 −1.86 × 10−2

n = 10 α # iterations SSE RMSE max absolute error mean error
∗ 0.9 19; 100 2.23 × 10−19 3.34 × 10−11 2.04 × 10−10 −7.84 × 10−12

0.8 44 9.75 × 10−18 3.11 × 10−10 1.74 × 10−9 −7.96 × 10−11

0.7 98 6.07 × 10−18 2.46 × 10−10 1.47 × 10−9 −5.77 × 10−11

0.6 100 4.15 × 10−17 6.43 × 10−10 3.78 × 10−9 −1.55 × 10−10

0.5 98 1.25 × 10−16 1.12 × 10−9 6.38 × 10−9 −2.97 × 10−10

0.4013 37 2.95 × 10−15 5.42 × 10−9 3.08 × 10−8 −1.61 × 10−9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4012 43 8.74 × 10−10 2.95 × 10−6 2.93 × 10−5 −4.56 × 10−8

0.4 100 2.17 × 10−5 4.65 × 10−4 2.09 × 10−3 −2.44 × 10−4

∗ In these two cases we use the progressively finer grid method: we first set g = 200 and then
double the grid to g = 400. The two numbers in the iterations column refer to the two phases of
the process.
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Figure G.8: Comparing v with x∗.
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Figure G.9: Payoff function U(v, x) as a function of x, for two examples.
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Table G.5: Section of the source code in which all parameters are declared.

// =====================================================================================
// In this section, the parameters of the problem are given.
// You are free to change these parameters.

const byte n = 2; // # bidders (greater than or equal to 2)
const double alpha = 0.9; // the bidder’s share (between 0.0 and 1.0)

// =====================================================================================
// Next we define the parameters defining the discrete approximation, the methods
// for finding the root and the initial guess, and the stopping conditions.
// These settings should only be changed with caution.

// --- discrete valuation space --------------------------------------------------------

static int g = 200; // initial # of points in the space of valuations
const int SubdivisionFactor = 4; // factor by which valuation space is subdivided
const int NbSubdivisions = 0; // number of times the space is subdivided

// "delta" for finite difference derivatives
const double diffDelta = 1E-10; // this is the "delta" we use to compute the

// derivatives
// --- initital bid function -----------------------------------------------------------

const int initmethod = 0; // choice of method for initial guess
// initmethod = 0 : linear guess
// initmethod = 1 : grid search

const double slope = (n-1)/(n-alpha); // slope of linear initial guess

const int GridSearchSteps = 50; // parameter for the grid search
// GridSearchSteps = # values that are tried for
// each point in the valuation grid

// --- step size optimization ----------------------------------------------------------

const int taumethod = 1; // taumethod = 0: brute force
// taumethod = 1: golden section search

const int tausteps = 10; // number of stepsizes we try out in each iteration step
// when using brute force

const double tauEps = 1E-2; // required precision when using golden section search

const double GRANDMAXTAU = 2.0; // maximum step size under all circumstances

→ continued on next page40



(Table G.5 continued)

// --- root finding --------------------------------------------------------------------

const int rootmethod = 3; // choice of method for root finding
// rootmethod = 0 : steepest descent method
// rootmethod = 1 : Gauss-Newton method (inverse Jacobian)
// rootmethod = 2 : hybrid method
// rootmethod = 3 : Levenberg-Marquardt method

// switching rule for hybrid method
const double switchEps = 1E-12;
const double switchKeep = 5;

// coefficients for Levenberg-Marquardt method
const double initMu = 1E-3; // initial mu
const double muFactor = 10; // factor by which mu is multiplied or divided
const double maxMu = 1E+100; // upper bound for mu
const double minMu = Double.Epsilon; // lower bound for mu

// --- stopping rules ------------------------------------------------------------------

const double eps = Double.Epsilon; // stop iterating if SSE < eps
// (Double.Epsilon is machine precision, so this
// effectively turns off this stopping rule; you
// can choose a larger value for eps)

const int keepiter = 20; // stop iterating if no improvement in so many steps
const int maxiter = 100; // stop after so many steps in any case

// =====================================================================================
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