
Optimal bid disclosure in patent license auctions under
alternative modes of competition*

Cuihong Fan
Shanghai University of Finance and Economics

School of Economics†

Byoung Heon Jun
Korea University, Seoul

Department of Economics‡

Elmar G. Wolfstetter
Humboldt-University at Berlin and

Korea University, Seoul§

March 10, 2016

Abstract

The literature on patent license auctions in oligopoly assumed that the auctioneer reveals
the winning bid and stressed that this gives firms an incentive to bid high in order to signal
an aggressive output strategy in a downstream Cournot market game, and conversely bid low
to signal acquiescent pricing in a Bertrand market game. The present paper examines the
information revealed by publishing the winning or the losing or no bid, assuming an oligopoly
with differentiated goods. We rank disclosure rules and find that it is not optimal for the
innovator to disclose the winning bid, regardless of the mode of competition.
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paper explores this issue and determines which of the standard auctions is optimal.
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The literature on patent license auctions in oligopoly assumed that the auctioneer reveals the
winning bid and stressed that this gives firms an incentive to bid high in order to signal aggressive
behavior in a subsequent Cournot market game, and conversely bid low and signal acquiescent
pricing in a Bertrand market game. However, the literature never examined whether revealing the
winning bid (or any other bid) is actually beneficial for the innovator.

The analysis of license auctions in oligopoly was initiated by Katz and Shapiro (1986), Kamien
and Tauman (1986) and others who showed that auctioning a limited number of licenses is more
profitable than other selling mechanisms such as royalty licensing (see the survey by Kamien,
1992).1 One limitation of their analysis is the assumption that firms’ cost reductions induced by the
innovation are completely known to all firms prior to bidding.

Later, Jehiel and Moldovanu (2000) introduced incomplete information at the auction stage, but
maintained the assumption that cost reductions become known after the auction and before the
oligopoly game is played. This gap was closed by Das Varma (2003), Goeree (2003), and Katzman
and Rhodes-Kropf (2008) who assumed that firms can infer the winner’s cost reduction only
indirectly by observing the winning bid, which gives rise to a signaling issue.2 They showed that,
in Cournot oligopoly, firms have an incentive to signal strength by bidding high, and conversely,
signal weakness by bidding low in Bertrand oligopoly.

The present paper examines the information revealed by publishing the winning or the losing or no
bid, assuming a differentiated goods duopoly with substitutes. We consider three bid disclosure
rules: full disclosure, which happens to be equivalent to disclosing the winning bid, partial
disclosure, which is equivalent to disclosing the second-highest bid, and no disclosure. These
disclosure rules are intimately linked to standard auction formats, ranging from Dutch to English
and to standard sealed-bid auctions (either first- or second-price). We rank disclosure rules and
find that, regardless of the mode of competition, it is never optimal to unconditionally disclose
the winning bid. In fact, under Bertrand competition, it is always optimal to disclose no bid. The
same applies to Cournot competition for a substantial range of parameter values, although there are
parameter values for which it is optimal to conditionally disclose the winning bid if the winning
bid is above a certain threshold level.

If the winning bid is revealed, firms benefit from signaling either strength or weakness through their
bids, depending upon the downstream market game. In a Cournot market game, if a bidder inflates
his bid and wins the auction, his bid signals a higher cost reduction to his rival. This indicates
that the winner of the auction will play a more aggressive output strategy, which in turn induces
the loser of the auction to reduce his output. Whereas in a Bertrand market game, bidders benefit
from deflating their bids, because signaling a low cost reduction induces the rival to raise his price.
Of course, inflating one’s bid makes winning more costly (yet increases the chance of winning),
whereas deflating one’s bid is costly because it reduces the chance of winning (yet, makes winning
less expensive). In equilibrium, the marginal benefits of unilaterally changing one’s bid are in
perfect balance with its marginal cost.

If the losing bid is disclosed, in the event of losing the auction, one’s bid reveals the cost reduction
one would have had if one had won the auction. This is, of course, not interesting, in and by itself.
However, the winner can make use of that information because it informs him about the loser’s

1However, Giebe and Wolfstetter (2008) and Fan, Jun, and Wolfstetter (2013, 2014a) found, in a variety of models,
that amending auctions with royalty contracts to the losers of the auction generally increases the innovator’s expected
profit.

2Similarly, our own contributions to licensing mechanism under incomplete information also assume that the innovator
discloses the winning bid.
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beliefs concerning the winner’s cost reduction. Therefore, the losing bid signals the updated beliefs
of the loser about the winner’s cost reduction.

Under both modes of competition, publishing the losing bid contributes to deflate bids. However,
as the loser only knows that the winner’s cost reduction is higher than his own, the loser remains
uncertain about the winner’s cost reduction. This affects the profit premium of winning, which also
exerts a strong effect on equilibrium bids. In particular, under Cournot competition that uncertainty
makes winning more profitable for relatively low cost reductions and less profitable for high cost
reductions, and vice versa in the case of Bertrand competition.

Finally, if no bid is revealed, no signaling occurs through bids. Bidders can only update their beliefs
after learning that they either lost or won the auction. In that case, uncertainty about the winner’s
cost reduction and about the loser’s beliefs prevail. However, the updating of beliefs depends upon
the bid with which one either won or lost the auction. This invites strategic experimentation with
one’s bid with the intention to learn from the observed event of winning and losing at one’s bid.
Again, the incentives for experimentation affect the equilibrium bid function in a way that depends
on the market game.

The role of bid disclosure has also been explored in the context of asymmetric first-price auctions
with resale opportunities (see Hafalir and Krishna, 2008, Lebrun, 2010), where resale is driven by
the notorious inefficiency of the first-price auction. There, the choice of disclosure rule also affects
equilibrium bids. However, unlike in the present paper, the choice of disclosure rule neither affects
the allocation nor expected payoffs.3

Our analysis also bears a relationship to the literature on information sharing in oligopoly. That
literature assumed that firms can commit to reveal their private information before they draw that
information. The main finding was that in a Cournot oligopoly with substitutes firms have an
incentive to reveal information concerning their private cost, whereas firms prefer not to reveal
information concerning product demand (see Shapiro, 1986, Gal-Or, 1985, Vives, 1984, 1990). A
critical assumption of that literature is that firms can commit to reveal information, good or bad,
before it becomes available, and that the revealed information is verifiable.

However, in license auctions the auctioneer can commit to indirectly reveal cost information by
choosing an auction rule that automatically reveals some bids or no bid. Information sharing is thus
a byproduct of bidding, which also bypasses the verifiability required in the information exchange
literature.

The plan of the paper is as follows: In Section 2 we state the model and solution procedure. In
Sections 3 and 4 we analyze the impact of different disclosure rules assuming the downstream
market game is either subject to Bertrand or Cournot competition. In Section 5 we compare and
interpret the equilibrium bid functions across disclosure rules and market games, and in Section 6
summarize the revenue ranking of disclosure rules and show that standard auctions are not revenue
equivalent because they imply different disclosure rules. In addition we rank disclosure rules
by consumer surplus and social surplus. In Section 7 we generalize by introducing conditional
disclosure rules that disclose information depending on the level of the winning bid, and characterize
the optimal disclosure rule. The paper closes with a discussion.

3In the behavioral literature, the role of bid disclosure has also been explored. There it was claimed that publishing
either the winning or the losing bid may boost revenue, on the ground that bidders anticipate either loser or winner regret
(Engelbrecht-Wiggans and Katok, 2008, Filiz-Ozbay and Ozbay, 2007). However, in a recent experiment, Katuscak,
Michelucci, and Zajicek (2015) showed that such feedback manipulation does not systematically affect bids.
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2 Model and solution procedure

An outside innovator employs a standard first-price auction to sell the exclusive right to use a
process innovation to one of two risk neutral firms. The innovator sets a disclosure rule that commits
him to reveal some or all or no bids. After the relevant outcome of the auction has been disclosed,
firms play either a Bertrand or a Cournot duopoly game with differentiated products.

Three bid disclosure rules are considered: the innovator either discloses

• the winning bid (full disclosure4), or

• only the losing bid (partial disclosure), or

• neither the winning nor the losing bid (no disclosure).

The timing of the licensing game is as follows: 1) The innovator announces the bid disclosure rule.
2) Firms draw their cost reduction and simultaneously submit their bids. 3) The innovator awards
the license to the highest bidder who pays his bid (the losing bidder pays nothing), and discloses
information concerning bids according to the announced disclosure rule. 4) Firms play either a
Bertrand or a Cournot duopoly game, simultaneously choosing unit prices p1, p2, resp. outputs,
q1,q2.

Firms produce differentiated products which are substitutes. They face demand functions in which
the direct effect of price on demand is stronger than the indirect effect.

Prior to the innovation, firms have the same unit cost c > 0. Using the innovation reduces one’s
unit costs by an amount xi that depends on who uses it. Potential cost reductions are firms’ private
information, unknown to their rival and to the innovator. They are i.i.d. random variables, drawn
from the uniform distribution F : [d,c]→ [0,1], where d is bounded away from zero (as further
specified below). The innovation is non-drastic, i.e., its adoption cannot propel a monopoly.

We illustrate results with demand functions, Qi, and the underlying utility function, U , introduced
by Shubik and Levitan (1980):5

Qi(pi, p j) : =
a
b
− 1

b(1− s)
(pi− sp j) , s ∈ (0,1), a,b > 0 (1)

U(qi,q j) = a(qi +q j)−
b

2(1+ s)
(q2

i +q2
j +2sqiq j). (2)

The linearity of demand is essential for obtaining closed form solutions of equilibrium bid functions
and for the payoff ranking of different disclosure rules.6

In these demand functions, a represents consumers’ maximum willingness to pay, s the degree of
product substitutability, and 1/b the size of the market. The substitution parameter s ranges from
s = 0, when products are independent, to s approaching 1, when goods become perfect substitutes.
The corresponding inverse demand functions are: Pi(qi,q j) := a− b

1+s(qi + sq j).

The Shubik-Levitan specification has been designed to remedy an undesirable feature of the often
used Bowley specification (Bowley, 1924, Singh and Vives, 1984), in which an increase in the

4Revealing the winning bid is as informative as revealing the winning and the losing bids.
5We express the Shubik-Levitan demand function in the slightly more convenient yet equivalent form, introduced by

Collie and Le (2015).
6For the same reason linearity of demand is assumed in the older as well as in the latest information exchange

literature (see Bagnoli and Watts, 2015).
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measure of substitutability reduces the size of the market and makes it shrink away completely as
products become perfect substitutes.

In a Cournot market game an innovation is non-drastic if the equilibrium output of the firm that did
not get the innovation is positive, for all x. Similarly, in a Bertrand market game, an innovation
is non-drastic if the equilibrium price of the firm that did not get the innovation is greater than its
unit cost, c. The innovation is non-drastic for all cost reductions x if it is non-drastic for the highest
possible cost reduction, x = c. Therefore, assuming the above demand functions, the following
conditions are necessary and sufficient for a non-drastic innovation:

Cournot: c <
a(2− s)

2
, Bertrand: c <

a(2− s− s2)

2− s2 . (3)

Evidently, if the innovation is non-drastic under Bertrand competition, it is also non-drastic under
Cournot competition.

In the following we solve the equilibrium bid functions for the considered disclosure rules and
downstream market games, employing the following solution procedure.
1) As a working hypothesis, suppose the auction games have symmetric equilibria with strictly
increasing equilibrium bid functions, β , (which will be confirmed).
2) Suppose one firm, say firm 1, unilaterally deviates from equilibrium bidding, while its rival
plays the equilibrium bid strategy, β . Without loss of generality we restrict deviating bids to the set
[β (d),β (c)], because bidding outside that range is dominated.
3) Unilateral deviations from equilibrium bidding lead into duopoly subgames that are off the
equilibrium path. Therefore, in order to compute the payoff of the firm that unilaterally deviates
one must first solve all duopoly subgames, on and off the equilibrium path.
4) For β to be an equilibrium strategy, it must be such that no unilateral deviation is profitable.
Using this requirement allows us to find the equilibrium.

3 Bertrand competition

If the downstream market game is subject to Bertrand competition, firms play price strategies, and
firms’ payoff functions in the duopoly subgames are: πi(pi, p j;ci) := Qi(pi, p j)(pi− ci).

For each disclosure rule we first solve the equilibria of all possible duopoly subgames on the
equilibrium path, i.e., if firms stick to equilibrium bids, and off the equilibrium path, when a firm
unilaterally deviates from equilibrium bidding. Computing the reduced form equilibrium profit
functions for all possible duopoly subgames, we then solve the bidding game.

3.1 Full disclosure

Because the equilibrium bid function, β B
f , is strictly increasing, by hypothesis, the winning bid

informs the loser about the winner’s cost reduction. The winner’s equilibrium price is increasing in
his unit cost. Therefore, if the loser observes a high bid, he infers that the winner has a high cost
reduction and thus predicts the winner to set a low price. In turn this induces the loser to respond
with a low price. Anticipating this response, bidders have an incentive to strategically deflate their
bids in order to signal that they have a low cost reduction if they win, which then induces the loser
to quote a high price.
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3.1.1 Downstream duopoly subgames

In a first step we solve the equilibrium price strategies, pef
W (x), pef

L (x), of the duopoly subgames on
the equilibrium path. The superscript e is mnemonic for “on the equilibrium path”. Suppose the
winner of the auction had drawn cost reduction x and bid β B

f (x), while the loser had drawn y < x

and bid β B
f (y). Then, pef

W (x), pef
L (x) must solve the equilibrium requirements:

pef
W (x) = argmax

p
πi(p, pef

L (x);c− x), pef
L (x) = argmax

p
π j(p, pef

W (x);c).

In the linear model: pef
W (x) = (2+s)(a+c−as)−2x

4−s2 , pef
L (x) = (2+s)(a+c−as)−sx

4−s2 .

Now consider a firm, say firm 1, with cost reduction x, that unilaterally deviated from equilibrium
and bid β B

f (z) rather than β B
f (x), while firm 2, with cost reduction y, played the strictly increasing

equilibrium bidding strategy and bid β B
f (y). Then, the following subgames occur, depending upon

the pretended cost reduction of firm 1, z, and the cost reduction parameter of firm 2, y.

Firm 1 won the auction (z≥ y) In that case firm 2 believes that the cost reduction of firm 1 is
equal to z and thus plays the strategy pef

L (z). However, firm 1 privately knows that its cost reduction
is x and therefore plays its best reply to p2 = pef

L (z):

p f
W (x,z) := argmax

p
π1

(
p, pef

L (z);c− x
)
.

p f
W (x,z) is decreasing in x and in z. In the linear model: p f

W (x,z) = (2+s)(2c+2a(1−s))−(4−s2)x−s2z
2(4−s2)

.

Firm 1 lost the auction (z < y) In that case the roles of firm 1 and firm 2 are reversed. The only
difference is that firm 2 does not deviate from equilibrium and thus signals its true cost reduction, y.
Therefore, p f

L(y) = pef
L (y). Note that p f

L(y) is decreasing in y.

Altogether the reduced form equilibrium profit functions of firm 1, contingent upon winning/losing
the auction, are:

π
f

W (x,z) := π1

(
p f

W (x,z), pef
L (z);c− x

)
, π

f
L (y) := π1

(
p f

L(y), pef
W (y);c

)
.

In the linear model: π
f

W (x,z) = 1
b(1−s)

(
p f

W (x,z)− c+ x
)2

, π
f

L (y) =
1

b(1−s)

(
pef

L (y)− c
)2

.

3.1.2 Equilibrium bid strategy

Using the solution of the duopoly subgames, the expected payoff of a bidder with cost reduction x
who bids as if his cost reduction were equal to z, while his rival follows the equilibrium strategy,
β B

f , is:

Π f (x,z) = F(z)
(

π
f

W (x,z)−β
B
f (z)

)
+
∫ c

z
π

f
L (y)dF(y). (4)

Invoking the equilibrium requirement: x = argmaxz Π f (x,z), the equilibrium bid strategy β B
f must

satisfy the first-order conditions:(
β

B
f (x)F(x)

)′
= F ′(x)

(
π

f
W (x,x)−π

f
L (x)

)
+F(x)∂z π

f
W (x,z)

∣∣∣
z=x

, ∀x. (5)
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In the linear model, second-order conditions are satisfied, because Π f (x,z) is pseudo-concave in z,
for all x (see Appendix A.1).7

The equilibrium requirement (5) has a nice interpretation. In equilibrium, the bid function must be
such that the marginal benefit of increasing one’s bid (RHS) equals its marginal cost (LHS), so that
it never pays to deviate from bidding β B

f (x).

The marginal benefit has two components: as z is increased, 1) it becomes more likely to win the
auction and earn a higher profit premium (first term); 2) in the event of winning, the rival is led
to believe that he faces a stronger player, with a higher cost reduction, which makes him reduce
his price – to the disadvantage of the winner. Therefore, the second term, the marginal benefit of
signaling, F(x)∂z π

f
W (x,z)

∣∣∣
z=x

, is negative.

Altogether we find that disclosing the winning bid gives firms an incentive to signal a low cost
reduction which exerts a downward pressure on the equilibrium bid function. In equilibrium, no
false signals are sent. This is achieved by choosing the bid function in such a way that the marginal
benefits and costs of sending false signals are equalized at each point of that function.

Integration of (5) yields, for all x ∈ (d,c], the equilibrium bid function:

β
B
f (x) =

∫ x

d

(
π

f
W (y,y)−π

f
L (y)

) F ′(y)
F(x)

dy+
∫ x

d
∂z π

f
W (y,z)

∣∣∣
z=y

F(y)
F(x)

dy. (6)

In the linear model, β B
f (x) is a quadratic equation. Its coefficients are spelled out in Appendix A.1,

equation (A.1). In that Appendix we also show that the assumed strict monotonicity of the bid
function confirms and that non-negativity of bids is assured. Therefore, β B

f is indeed an equilibrium
bid function.

3.2 Partial disclosure

Because revealing only the winning bid implies full disclosure, partial disclosure means disclosing
only the losing bid.

As the equilibrium bid function, β B
p , is strictly increasing, by hypothesis, the losing bid informs

the winner about the loser’s cost reduction. Of course, the winner does not care about the cost
reduction the loser would have enjoyed if he had won the auction. However, knowing the loser’s
cost reduction allows the winner to infer that the loser believes the winner’s cost reduction to be
greater than the loser’s signal. Therefore, when the losing bid is revealed, the loser of the auction
signals his beliefs about the cost reduction of the winner.

Specifically, a higher losing bid indicates to the winner that he is seen as stronger, which has
an adverse effect on the loser’s profit. Taking this into account, bidders have an incentive to
strategically deflate their bids.

3.2.1 Downstream duopoly subgames

The equilibrium price strategies on the equilibrium path, pep
W (x,y), pep

L (y), must solve the equilibrium
requirements:

pep
W (x,y) = argmax

p
πi(p, pep

L (y);c− x), pep
L (y) = argmax

p

∫ c

y
π j(p, pep

W (x,y);c)F ′(x)/(1−F(y))dx.

7Pseudo-concavity of Π(x,z) in z means that Π is increasing in z for z < x and decreasing for z > x; hence, the
solutions of the first-order conditions yield global maxima.
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In the linear model, pep
W (x,y)= 4a(2−s−s2)+c(8+4s−s2)−2(4−s2)x−s2y

4(4−s2)
, and pep

L (y)= 2a(1−s)(2+s)+c(4+s)−sy
2(4−s2)

.

Similar to the analysis of full disclosure, suppose firm 1 had drawn the cost reduction x and
unilaterally deviated from equilibrium and bid β B

p (z), while firm 2, with cost reduction y, bid β B
p (y).

Then, the following subgames occur, depending upon y and z.

Firm 1 won the auction (z > y) In that case firm 2 believes that the cost reduction of firm 1 is in
the set (y,c], and firm 1 knows this because it observes β B

p (y). Therefore, firm 2 plays the strategy
pep

L (y) and firm 1 plays its best reply to that strategy:

pp
W (x,y) : = argmax

p
π1(p, pep

L (y);c− x) = pep
W (x,y). (7)

Note that pp
W (x,y) is decreasing in x and y.

Firm 1 lost the auction (y > z) In that case firm 1 believes that firm 2’s cost reduction is in the
set (z,c], and firm 2 knows this.

By the above reasoning (reversing the roles of firms 1 and 2) we find that the equilibrium strategy
of firm 1 is pp

L(z) = pep
L (z) and that of firm 2 is pp

W (y,z). Note that pp
L(z) is decreasing in z.

Altogether, the reduced form profit functions, contingent upon winning/losing are:

π
p
W (x,y) := π1(pp

W (x,y), pep
L (y);c− x), π

p
L (z) :=

∫ c

z
π1(pp

L(z), pp
W (y,z);c)

dF(y)
1−F(z)

.

In the linear model: π
p
W (x,y) = 1

b(1−s)(pp
W (x,y)− c+ x)2, π

p
L (z) =

1
b(1−s)(pep

L (z)− c)2.

3.2.2 Equilibrium bid strategy

The expected payoff of a bidder with cost reduction x who unilaterally deviates and bids β B
p (z) is:

Πp(x,z) =
∫ z

d

(
π

p
W (x,y)−β

B
p (z)

)
dF(y)+(1−F(z))π p

L (z). (8)

Again, invoking the equilibrium requirement: x = argmaxz Πp(x,z), β B
p must satisfy:(

β
B
p (x)F(x)

)′
= F ′(x)

(
π

p
W (x,x)−π

p
L (x)

)
+(1−F(x)) π

p ′
L (z)

∣∣
z=x , ∀x. (9)

Second-order conditions are satisfied (see Appendix A.1).

Like in the case of full disclosure, the RHS of (9) states the marginal benefit of raising one’s bid;
the LHS states its marginal cost. The first term of the marginal benefit has the same interpretation
as in the full disclosure case. The second term indicates the signaling aspect of the losing bid: as
one increases z to z′ and yet loses the auction, one’s inference concerning the set of rival’s type
is changed from (z,c] to (z′,c]; therefore, one infers that the rival has, on average, a higher cost
reduction and thus sets, on average, a lower price, which reduces one’s expected profit. Therefore,
the marginal signaling benefit, (1−F(x)) π

p ′
L (z)

∣∣
z=x, is negative.

Integration yields, for all x ∈ (d,c]:

β
B
p (x) =

∫ x

d

(
π

p
W (y,y)−π

p
L (y)

) F ′(y)
F(x)

dy+
∫ x

d
π

p ′
L (z)

∣∣
z=y

1−F(y)
F(x)

dy. (10)

In the linear model β B
p is a quadratic function. Its coefficients are spelled out in Appendix A.1.

There we also confirm the strict monotonicity of β B
p and, provided d is sufficiently bounded away

from zero, the non-negativity of bids. In that case, β B
p is indeed an equilibrium bid function.
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3.3 No disclosure

If bids are not disclosed, there is no signaling through bids. Updating of prior beliefs occurs only
in response to winning and losing. The loser of the auction can only infer that the winner’s cost
reduction is greater than his own true resp. pretended cost reduction from which he can draw an
inference concerning the winner’s average price. Similarly, the winner can only infer that the loser’s
cost reduction is lower than his own true resp. pretended cost reduction from which he can draw
an inference concerning the loser’s average price. Because the inferences that one draws in the
event of winning or losing depend upon the pretended bid, bidders have an incentive to engage in
strategic experimentation through their bids.

Firms play price strategies conditional on winning and losing.

3.3.1 Downstream duopoly subgames

Consider a firm with cost reduction x that won the auction while the loser has drawn the cost
reduction y. Both firms do not know each others’ cost reductions. They only observe their own
draw and whether they won or lost.

The equilibrium strategies on the equilibrium path are:

pen
W (x) = argmax

p

∫ x

d
πi(p, pen

L (y);c− x)
dF(y)
F(x)

, pen
L (y) = argmax

p

∫ c

y
π j(p, pen

W (x);c)
dF(x)

(1−F(y))
.

In the linear model:

pen
W (x) =

a(16− s2)(1− s)(2+ s)+ c(2− s)s(8+ s)+32c−2ds2− (32−8s2)x
64−20s2 + s4

pen
L (y) =

a(16− s2)(1− s)(2+ s)+ c(32+(2− s)s(4+ s))−ds3− (8s−2s3)y
64−20s2 + s4 .

Again, consider one firm, say firm 1, with cost reduction x that unilaterally deviated from equilibrium
and bid β B

n (z). If that firm won the auction, its equilibrium strategy off the equilibrium path, pn
W (x,z),

solves the best-reply requirement:

pn
W (x,z) = argmax

p

∫ z

d
π1(p, pen

L (y);c− x)
dF(y)
F(z)

.

Whereas if it lost the auction, its equilibrium price strategy off the equilibrium path is pn
L(z) = pen

L (z).
Note that pn

W (x,z) is decreasing in x and z and pn
L(z) is decreasing in z.

Altogether, the reduced form profit functions of firm 1, conditional on winning/losing, are:

π
n
W (x,z) : =

∫ z

d
π1(pn

W (x,z), pen
L (y);c− x)

dF(y)
F(z)

π
n
L(z) : =

∫ c

z
π1(pn

L(z), pen
W (y);c)

dF(y)
1−F(z)

.

In the linear model, pn
W (x,z) = 32c+a(16−s2)(1−s)(2+s)+s(c(2−s)(8+s)−2ds)

2(64−20s2+s4)
− x

2 −
s2z

2(16−s2)
, πn

W (x,z) =
1

b(1−s) (pn
W (x,z)− c+ x)2, πn

L(z) =
1

b(1−s) (pn
L(z)− c)2.

9



3.3.2 Equilibrium bid strategy

The expected payoff of a bidder with cost reduction x who unilaterally deviates and bids β B
n (z) is:

Πn(x,z) = F(z)
(
π

n
W (x,z)−β

B
n (z)

)
+(1−F(z))πn

L(z). (11)

Invoking the equilibrium requirement x = argmaxz Πn(x,z), gives, for all x:(
β

B
n (x)F(x)

)′
= F ′(x)(πn

W (x,x)−π
n
L(x))+F(x)∂z π

n
W (x,z)|z=x +(1−F(x)) π

n ′
L (z)

∣∣
z=x . (12)

Second-order conditions are satisfied (see Appendix A.1).

The RHS of (12) represents the marginal benefit of increasing one’s bid and the LHS represents its
marginal cost.

The marginal benefit has three components: The first term is positive and has the same interpretation
as in the case of full disclosure. The two other terms reflect the marginal benefits of experimentation;
these terms are negative for the following reasons.

As one increases one’s bid from β B
n (z) to β B

n (z
′) and wins the auction, the inferred set of the rival’s

types increases from [d,z) to [d,z′); depending upon his type y the rival updates his prior belief
about x to x∈ [y,c]; a higher y makes the rival more pessimistic about the winner’s type, and induces
him to compete more fiercely and set a lower price. Therefore, winning with a higher bid induces
the winner to predict that the loser quotes on average lower prices, which reduces the winner’s
expected profit. This explains why the second term is negative.

In turn, if one loses the auction after increasing one’s bid, the inferred set of the rival’s types reduces
from (z,c] to (z′,c]; therefore, one infers that the rival is, on average, stronger and sets on average a
lower price, which reduces one’s expected profit. This explains why the third term is also negative.

Integration of (12) yields, for all x ∈ (d,c]:

β
B
n (x) =

∫ x

d
(πn

W (y,y)−π
n
L(y))

F ′(y)
F(x)

dy

+
∫ x

d
∂z π

n
W (y,z)|z=y

F(y)
F(x)

dy+
∫ x

d
π

n ′
L (z)

∣∣
z=y

1−F(y)
F(x)

dy.
(13)

In the linear model β B
n (x) is a quadratic function. Its coefficients are spelled out in Appendix

A.1, equation (A.3). There, we also show that, in the linear case, β B
n is strictly increasing; the

non-negativity of bids follows provided d is sufficiently bounded away from zero. In that case, β B
n

is indeed an equilibrium bid function.

4 Cournot competition

If the downstream market game is subject to Cournot competition, firms play output strategies
and firms’ payoff functions in the duopoly subgames are: πi(qi,q j;ci) := (Pi(qi,q j)− ci)qi. The
derivation of equilibrium bid functions is similar to that in the Bertrand case. However, one must
carefully work out the equilibria and reduced form equilibrium profit functions of the duopoly
subgames which differ across market games.

Altogether we find that the signaling and experimentation effects have, with some exceptions,
opposite signs, and (not surprisingly) Bertrand competition is fiercer, which reflects in lower
revenues of the innovator.
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In order to avoid repetition of similar arguments we give a brief summary of results in the main text
and relegate the detailed computations of equilibrium bid functions to Appendix A.2. Unlike in the
case of Bertrand competition, equilibrium bids are non-negative for all d ≥ 0.

4.1 Full disclosure

Using a similar solution procedure as in the case of Bertrand competition, one can compute the
equilibrium strategies, q f

W (x,z), q f
L(y), and reduced form profit functions. In the linear model:

π
f

W (x,z) = b
(1+s)q

f
W (x,z)2, π

f
L (y) =

b
(1+s)q

f
L(y)

2. Note that, q f
W (x,z) increases in x and in z, whereas

q f
L(y) decreases in the rival’s cost reduction y.

The equilibrium bid function can be expressed in exactly the same form as in the corresponding
Bertrand case, equation (6). However, the functions π

f
W (x,z) and π

f
L (y) differ and the sign of the

signaling benefit is reversed, i.e., ∂zπ
f

W (x,z)
∣∣∣
z=x

> 0.

The sign reversal of the signaling benefit is due to the fact that if a bidder signals a higher cost
reduction and wins the auction, the rival responds by reducing his output, which increases the
winner’s profit, whereas in the corresponding Bertrand case, it induces the rival to set a lower price.

The equilibrium bid function accounts for this incentive by making it sufficiently costly to inflate
one’s bids. Therefore, unlike in the Bertrand case, the signaling effect contributes to an upward
shift of the equilibrium bid function.

4.2 Partial disclosure

Again, one can compute the equilibrium strategies, qp
W (x,y), qp

L(z), and reduced form profit func-
tions of firm 1, π

p
W (x,y), π

p
L (z), as spelled out in Appendix A.2.

Note, qp
W (x,y) increases in x and in y and qp

L(z) decreases in z.

The equilibrium bid function can be expressed in exactly the same form as in the corresponding
Bertrand case, equation (10). However, the functions π

p
W (x,y), π

p
L (z) differ and the size of the

signaling effect differs. The sign of the signaling effect, π
p′
L (z)

∣∣
z=x < 0 is the same as in the

Bertrand case. This is due to the fact that if a bidder signals a higher cost reduction and loses the
auction, the rival observes one’s bid and learns that one is more pessimistic about his cost reduction,
which induces the rival to supply more output, which reduces the profit of firm 1.

4.3 No disclosure

Similarly, one can compute the equilibrium strategies, qn
W (x,z), qn

L(z), and the associated reduced
form profit functions, πn

W (x,z), πn
L(z), as explained in Appendix A.2. Note, qn

W (x,z) increases in x
and in z, whereas qn

L(z) decreases in z.

The equilibrium bid function has the same form as in the corresponding Bertrand case, equation
(13). However, the functions πn

W and πn
L differ and the sign of the first experimentation benefit is

reversed, i.e., ∂z πn
W (x,z)|z=x > 0.

The signs of the experimentation benefits can be interpreted as follows: If one increases one’s bid
and wins the auction, one infers that the loser’s type set is enlarged; because the loser’s output
decreases in his type, it follows that the loser produces, on average, a lower output, which increases
one’s expected profit. Similarly, if one increases one’s bid and loses the auction, one becomes more
pessimistic and expects the winner to produce more, which reduces one’s expected profit.

11



Note that βC
n (d)> 0 for all d ≥ 0. This indicates that firms have a positive willingness to pay for

winning the auction even if the innovation has no intrinsic value.

5 Comparison of bid functions

We now summarize and interpret the relationship between equilibrium bid functions which is
illustrated in Figure 1, focusing on the comparison of full and no disclosure.8

Proposition 1. The equilibrium bid function βC
n intersects βC

f exactly once, from above. The
function β B

n intersects β B
f function exactly once, from below, provided d is sufficiently bounded

away from zero.

Proof. ∆C(x) := βC
n (x)−βC

f (x) is a quadratic and strictly concave function of x with ∆C(d)> 0
and ∆C(c)< 0. Therefore, ∆C has exactly one root in (d,c). Similarly, ∆B(x) := β B

f (x)−β B
n (x) is

a quadratic and strictly concave function of x with ∆B(c)< 0 and, if d is sufficiently bounded away
from zero, ∆B(d)> 0. Therefore, if d is sufficiently bounded away from zero, ∆B has exactly one
root in (d,c).

These properties can be interpreted as follows.

Consider Cournot competition. If a bidder has drawn a relatively low cost reduction, in the event of
winning the auction he is better off if he keeps his rival uncertain, because that uncertainty induces
the rival to supply a lower output. Whereas a bidder with a high cost reduction is better off if
he can communicate this fact to his rival and thus induce him to supply a lower output. Hence,
βC

n (x)> βC
f (x) if x is low and βC

f (x)> βC
n (x) if x is high.

All of this is reversed under Bertrand competition. There, in the event of winning, a bidder with a
high cost reduction prefers to keep the rival uncertain about his cost reduction, in order to prevent
the rival from competing fiercely by quoting a low price. Whereas, if he has a low cost reduction he
prefers full to no disclosure, because signaling a low cost reduction induces the rival to set a high
price. Hence, β B

f (x)> β B
n (x) if x is low and β B

f (x)< β B
n (x) if x is high.9

Another notable feature is that if the winning bid is not revealed, bidders earn a positive profit
premium of winning,

∫ x
d (πW (y,y)−πL(y))F ′(y)/F(x)dy, under Cournot as well as under Bertrand

competition, even if the innovation has no intrinsic value, which happens if x is close to d and d
close to zero. The reason is that if one wins with a cost reduction close to zero, the loser, whose
cost reduction is even closer to zero, believes the winner to be strong in the sense that his updated
belief about the winner’s cost reduction is almost the same as his prior belief.

In the case of Cournot competition, the profit premium of winning is greater than the negative
signaling effect (in the partial information régime) resp. greater than the negative experimentation
effect (in the no disclosure régime), even when the intrinsic value of the innovation, x, is close to
zero. This is why the bid functions βC

p ,β
C
N have a positive intercept for d = 0.

That feature is, however, not present under Bertrand competition. In fact, there one cannot
assure non-negative bids unless d is sufficiently bounded away from zero. This is due to the fact
that Bertrand competition is fiercer than Cournot competition, which gives rise to a lower profit

8The plots of the Bertrand case assume (a,b,s,c,d) = (1,1, .87, .2,0.05), and the plots of the Cournot case
(a,b,s,c,d) = (1,1, .9, .4,0.05).

9In the case of Bertrand, if d is not sufficiently high, one cannot exclude the possibility that ∆B(d) is negative;
however, in that case, ∆B is still positive for low values of x except for values close to d.
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premium of winning to such an extent that, for x close to d and d close to zero, the profit premium
of winning, does not outweigh the negative signaling effect,

∫ x
d π

p ′
L (z)

∣∣
z=y

(1−F(y))/F(x)dy, resp.
the experimentation effect,

∫ x
d πn ′

L (z)|z=y
(1−F(y))/F(x)dy (note, the other experimentation benefit

vanishes as x goes to d).
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Figure 1: Equilibrium bid functions (Bertrand: left, Cournot: right)

6 Optimal bid disclosure

Even though the bid pattern differs radically across the two market games, we find that the innovator
most prefers no disclosure, for a large range of parameter values. For this purpose we compute the
innovator’s expected revenues, Ri :=

∫ c
d βi(x)2F(x)dF(x). Define:

ϕ(a,d,s) :=
12a(2− s)(16− s2)s+d(64−124s2 +9s4)

64+384s−124s2−24s3 +9s4 .

Proposition 2. The innovator ranks disclosure rules as follows:
Bertrand: RB

n > RB
p > RB

f
Cournot: RC

n > RC
f > RC

p if c < ϕ(a,d,s)
RC

f > RC
n > RC

p if c > ϕ(a,d,s).

The proof is in Appendix A.3.

The parameter set for which RC
n > RC

f is illustrated in Figure 2. The area under the top line depicts
the set of parameters that are consistent with a non-drastic innovation, and the curve below depicts
the parameter set for which RC

n = RC
f . If s≥ 0.733, one has c < ϕ(a,d,s) for all parameter values.

However, as one can readily see from Figure 2, this condition is far from necessary. The plots
assume that d = 0. If d is increased, the lower curve is shifted upwards and the area in which
RC

n > RC
f is enlarged.

Altogether our analysis indicates that the ranking of the innovator’s expected revenues across
disclosure rules is not exclusively driven by the impact of signaling on bids, which has been the
focus of the literature on signaling in license auctions. Disclosure rules also affect the profit
premium of winning and this effect is decisive, except if the degree of substitutability is “low”.

Disclosure rules are intimately connected to auction formats. In an open, descending bid (Dutch)
auction the highest bid is automatically revealed to bidders, and in an open, ascending bid (English)
and second-price sealed-bid (Vickrey) auction the second highest bid is revealed to bidders, whereas
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Figure 2: Parameter values for which RC
n > RC

f

in a first-price sealed-bid auction bids are invisible (unless the auctioneer chooses to disclose
information). Because the considered auction formats are revenue equivalent if one controls for the
disclosed information, we find the following revenue ranking of auction formats:

Corollary 1. The innovator’s revenue ranking of standard auction formats is:
Bertrand: 1-st price sealed-bid � English/Vickrey � Dutch
Cournot: 1-st price sealed-bid � Dutch � English/Vickrey if c < ϕ(a,d,s)

Dutch � 1-st price sealed-bid � English/Vickrey if c > ϕ(a,d,s).

Hence, due to differences between the implied information disclosure, the standard auctions are not
revenue equivalent.

We mention that the innovator is better off if he licenses to firms that compete in a Cournot market
game.

Proposition 3. For each disclosure rule, the innovator’s equilibrium expected revenue is higher
under Cournot than under Bertrand competition: RC

r > RB
r , r ∈ { f , p,n}.

This finding is not surprising because firms compete more fiercely in a Bertrand market game.

Finally, we also rank disclosure rules by firms’ expected profits, Π∗, expected consumer surplus,
CS, and expected social surplus, S:

Proposition 4. In both market games, firms prefer more information disclosure and consumers
prefer less:

Π
∗
f > Π

∗
p > Π

∗
n, CSn > CSp > CS f .

The rankings of social surplus, S, are:

Bertrand: Sp > Sn > S f , Cournot: S f > Sp > Sn.

Proof. To facilitate the computations, note that the surplus to be shared by firms and the innovator,
T , is equal to the expected value of the sum of firms’ profits (gross, before deducting the winning
bid). Firms’ expected profits are Π∗ = 1/2(T −R). Consumer surplus, CS, is equal to the difference
between consumers’ expected utility and their expected payments to firms. Social surplus, S, is
equal to T +CS. The detailed computations are outlined in Appendix A.3.
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Evidently, more information improves efficiency. While firms prefer more information, the innova-
tor typically prefers the least efficient regime of no information disclosure. This indicates a sharp
conflict of interest.

Remark. In the special case of Cournot with perfect substitutes the rankings by consumer and
social surplus have a nice interpretation. In this case:

T : = E((1−Q)Q)−E(cqL +(c−X(1))qW ), Q := qW +qL

= (1−E(Q))E(Q)−Var(Q)−C̄, C̄ := E(cqL +(c−X(1))qW )

CS = 1/2E
(
Q2)= 1/2(E(Q)2 +Var(Q)), S = E(Q)− 1/2(E(Q)2 +Var(Q))−C̄.

The expected value of aggregate output is the same for all three disclosure rules, whereas, not
surprisingly, the variance of aggregate output and the expected value of aggregate cost decrease as
more information is disclosed:10 E(Qn) = E(Qp) = E(Q f ), Var(Qn)> Var(Qp)> Var(Q f ), C̄n >
C̄p > C̄ f . The rankings by S and CS follow immediately.

In order to gain more insight into what drives the revenue rankings, it is useful to break down the
revenue, R, into its constituent components:

R f = Pf +B f , Rn = Pn +BW
n +BL

n .

There, P denote the expected profit premium, B f the expected signaling benefit, BW
n the expected

experimentation benefit when winning, and BL
n the expected experimentation benefit when losing.11

In the case of Bertrand competition one has Pn > Pf and even though BW
n +BL

n may be smaller than
B f for some parameter values, the difference between Pn and Pf is stronger, so that Rn > R f holds
without qualification.

In the case of Cournot competition, the profit premium is higher under no disclosure, Pn >
Pf , whereas the sum total of the experimentation benefits is lower than the signaling benefit,
B f > 0 > BW

n +BL
n . The difference between Pn and Pf contributes to make no disclosure more

profitable, whereas the difference between B f and BW
n +BL

n has the opposite effect. If the degree of
substitutability, s, is sufficiently high, the profit premium is so much higher under no disclosure that
it outweighs the difference between the experimentation and the signaling benefits, which implies
Rn > R f . However, as s is reduced, goods become more independent, competition becomes less
intense, and the difference between the profit premiums, Pn−Pf , melts away. This occurs at a faster
rate than the reduction of B f − (BW

n +BL
n), so that, if s is sufficiently small, the revenue ranking

between f and n is reversed (as illustrated in Figure 2).

7 Generalization: Conditional bid disclosure

A comparison of the equilibrium bid functions plotted on the right-hand side of Figure 1 indicates
that under Cournot competition full disclosure induces the highest bids for high cost reductions,
whereas no disclosure yields the highest bids for low cost reductions. This suggests that, in the
Cournot case, “mixing” the two disclosure rules, by disclosing the winning bid if the winner’s bid

10For simplicity, assume a = 1,b = 2, together with s = 1. Then, E(Q) = (6−4c)/9, Var (Q f ) = c2/162, Var (Qp) =
Var (Q f )+ 5c2/864, Var (Qn) = Var (Qp)+ 19c2/21600, C̄ f = (4c−5c2)/9, C̄p = C̄ f + c2/144, C̄n = C̄p + c2/2160.

11Using the equilibrium bid functions and the definition of R one has P :=
∫ c

d
∫ x

d (πW (y,y)−πL(y))2dF(y)dF(x),

B f :=
∫ c

d
∫ x

d ∂z π
f

W (y,z)
∣∣∣
z=y

2F(y)dydF(x), BW
n :=

∫ c
d
∫ x

d ∂z πn
W (y,z)

∣∣
z=y 2F(y)dydF(x), BL

n :=
∫ c

d
∫ x

d πn
L
′(z)
∣∣
z=y 2(1−

F(y))dydF(x).
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is above a certain cutoff value and not disclosing any bid otherwise, may increase the innovator’s
expected profit. This leads us to consider a conditional disclosure rule.

Because equilibrium bid functions are strictly increasing, such a disclosure rule induces a threshold
level of the winner’s cost reduction, t ∈ [d,c], such that the winning bid is disclosed if the winner’s
cost reduction, x, is above that threshold level and no bid is disclosed if x is below t. Stating the
disclosure rule in this form covers unconditional disclosure as special cases, obtained for t = d (full
disclosure) and t = c (no disclosure).

To prepare the construction of the equilibrium bid function under Cournot competition, for each
given threshold level t, we first construct “auxiliary” bid functions βn,β f that make “small” unilat-
eral deviations unprofitable.

Specifically, let βn be the bid function that makes small unilateral deviations unprofitable, for all
x < t. Similarly, let β f be the bid function that makes “small” unilateral deviations from bidding
β f (x) unprofitable for all x≥ t. Thereby “small” means that the deviation does not induce a change
in disclosure regime, either from full disclosure ( f ) to no disclosure (n) or from n to f .

Using a solution procedure that corresponds closely to the derivation of βC
n and βC

f in Sections
4.1 and 4.3, we find βn and β f , which are non-negative and strictly increasing, and are stated in
Appendix A.4.12

Proposition 5. For a given threshold level, t, the equilibrium bid function under conditional
disclosure is:

β (x) :=

{
βn(x) if x < t
β f (x) if x≥ t

(14)

Proof. The bid functions βn and β f have been constructed to rule out profitable unilateral deviations
in z from x that do not induce a change in the disclosure regime (either from f to n or from n to
f ). To complete the proof it remains to be shown that the bid function (14) assures that “large”
deviations are not profitable either.

Let:

Π(x,z) =

{
Π f (x,z) if z≥ t
Πn(x,z) if z < t.

(15)

Consider the two possible profiles of “large” deviations: z > t > x and z < t < x. We show that in
both cases Π(x,z)< Π(x,x).

In order to prepare the proof, note that Π f (t, t) = Πn(t, t), and that Π f and Πn are pseudo-concave
in z because: ∂zxΠ f (x,z) > 0, and ∂zxΠn(x,z) > 0, as shown in Appendix A.4. Thus, one has
∂zΠ f (x,z), ∂zΠn(x,z) ≶ 0 ⇐⇒ z ≷ x. Moreover, as we also show in Appendix A.4, Π f (x, t)−
Πn(x, t)T 0 ⇐⇒ x T t. Hence, by combining all of the above,

Π(x,x)> Πn(x, t)> Π f (x, t)> Π f (x,z) = Π(x,z) for z > t > x and

Π(x,z)< Πn(x, t)< Π f (x, t)< Π f (x,x) = Π(x,x) for z < t < x.

This completes the proof that β is the equilibrium strategy.

12In deriving these functions keep in mind that if the winner’s cost reduction is less than t this fact becomes common
knowledge. Therefore, in this case, the loser does not only know that the winner’s cost reduction is higher than his own,
but also that it is lower than t. Moreover, in computing the initial condition for β f one needs to use the fact that Πn(t, t)
must be equal to Π f (t, t).
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Having solved the equilibrium bid function for each possible threshold level t we can now compute
the innovator’s expected revenue, as a function of t, and characterize the optimal disclosure rule by
maximizing that revenue with respect to t.

Proposition 6. The optimal disclosure rule, t∗, prescribes either no disclosure (t∗ = c) or condi-
tional disclosure with d < t∗ < c, as summarized in Figure 3.13 The optimal disclosure rule never
prescribes full disclosure.

Proof. The innovator’s expected revenue is equal to:

R(t) =
∫ t

d
βn(x)2F(x)dF(x)+

∫ c

t
β f (x)2F(x)dF(x),

which is a polynomial of order 4, stated in Appendix A.4. The derivative of R(t) is a polynomial
of order 3 that has a negative coefficient of the cubic term, t3. This polynomial has three roots:
t1 < t2 = d < t3. The root t3 is the maximizer of R if t3 ≤ c. If t3 > c, the maximizer is the corner
solution t∗ = c. Because R has a local minimum at t = d, full disclosure is never optimal.

When one restricts the analysis to unconditional disclosure rules, in the Cournot case one cannot
rule out that full disclosure is optimal (see Figure 2). However, as we generalize and allow for
conditional disclosure, in the Cournot case, like in the Bertrand case, it is never optimal to prescribe
full disclosure.

0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

1.0

c/a

conditional disclosure (d<t*<c)

no disclosure (t*=c)

Figure 3: Optimal disclosure rule under Cournot competition

8 Discussion

Compared to the information exchange literature we show that in a license auction information
exchange is implied by the publication of bids. Information exchange does not require that
firms commit to exchange information, good and bad, and that information is verifiable by the
recipient. The innovator can commit to administer the exchange of information simply by choosing
a particular auction rule, such as a Dutch auction. The innovator may thus be viewed as a mediator
who indirectly administers the information exchange between bidders by choosing a particular
auction format.

13Figures 2 and 3 assume d = 0.
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If the innovator were an impartial mediator who pursued the interests of bidders, he would apply
an open auction format that reveals the winning bid. However, as the innovator pursues his own
agenda, it is not in his own best interest to always reveal the winning bid.

Compared to the literature on license auctions with downstream interaction, we show that, for a
substantial range of parameter values, revealing the winning bid is not optimal for the innovator.
Although, under Cournot competition, revealing the winning bid gives rise to a signaling benefit
that contributes to increase bids, this is not all that matters to determine which disclosure rule
maximizes the innovator’s expected revenue.

Under Cournot competition, not revealing the winning bid considerably increases the profit premium
of winning, because it makes winning valuable even if the winner has a minimal cost reduction.
Moreover, if no bid is revealed, there is an experimentation benefit that contributes to increase
equilibrium bids. Altogether, these effects on bidding are sufficiently high to outweigh the signaling
benefit of disclosing the winning bid.

As we introduce conditional bid disclosure, revealing the winning bid is never optimal, not even in
Cournot competition with a low degree of substitutability of goods.

The analysis of information disclosure is relevant for the design of patent license auctions in
industry. License auctions are an important method to transfer intellectual property rights. These
auctions are often the last stage of an elaborate selling mechanism that involves a lengthy search
and screening process, followed by shortlisting a small number of promising bidders, until bids
are solicited. Simple, standardized patent auctions have been used for some time by NASA, the
licensing offices of major universities, and in bankruptcy proceedings, for example by the IRS to
recover back taxes, to name just a few.

In recent years, standardized patent auctions have become more common with the rise of Internet
platforms such as OceanTomo and IdeaBuyer. These auctions are typically open ascending bid or
first-price sealed-bid auctions which automatically disclose either the losing bid or no bid. As far as
we know, the bid disclosure issue analyzed in the present paper has so far not been addressed in the
applied literature (not to speak of sophisticated schemes like conditional disclosure). This may, in
part, be due to the fact that bidders often request that neither the winning bid nor the identity of the
winning bidder are disclosed, on the ground that they fear litigation from losers or patent trolls.14

A Appendix

All computations spelled out here use the linear model.

A.1 Supplements to Bertrand competition

Full disclosure The payoff function Π f (x,z) is pseudo-concave in z because

∂zxΠ f (x,z) =
2(a− c)(2− s− s2)+4x− s2(x+2z−d)

2b(c−d)(1− s)(4− s2)
> 0,

by the assumption that the innovation is not drastic (see (3)). Therefore, the equilibrium bid function
can be determined by using the first-order approach developed in the text.

14Quoting a paper by Rubenstein (1995), in their survey of patent auctions, Jarosz et al. (2010, p. 19) report that
when the IRS auctioned the high profile patent portfolio of the bankrupt disk drive manufacturer Orca Technology, Inc.,
“anonymity was required because the likely bidders were companies that manufacture infringing products . . . the winning
bidder would see losers as candidates for lawsuits.”
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Using the reduced form equilibrium profit functions contingent upon winning or losing the auction,
πW (x,z),πL(y), the coefficients of the quadratic bid function, β B

f (x) = µ f
(

λ
f

0 +λ
f

1 x+λ
f

2 x2
)

, are:

µ
f =

1
6b(1− s)(4− s2)2 > 0

λ
f

0 = 3(a− c)d(1− s)(2+ s)(4+2s− s2)+d2(8−8s2 + s4)> 0

λ
f

1 = 3(a− c)(1− s)(2+ s)(4+2s−3s2)+d(8−8s2 + s4)> 0

λ
f

2 = 2(4−7s2 +2s4).

(A.1)

The asserted strict monotonicity of β B
f confirms because β B

f
′ is linear and positive at the two

endpoints d and c:

β
B
f
′
(d)

1
µ f = 3a(8− s2(12− s−3s2))−8(3c−3d)− s2(36d−9ds2−3c(12− s−3s2))

> 3(2(c−d)s2 + cs(4−3s2)+d(2− s2)(4−3s2))> 0, by (3)

β
B
f
′
(c)

1
µ f = 3a(8− s2(12− s−3s2))− c(8− s2(8− s(3+ s)))+d(8−8s2 + s4)

> c(16+ s(12− s(22+ s(9−8s))))+d(8−8s2 + s4), by (3)

> 3d(2− s)(1+ s)(4−3s2)> 0, because c > d.

To prove the non-negativity of bids note that µ f > 0, λ
f

0 > 0 and λ
f

1 > 0. If λ
f

2 is positive, β B
f (d)

is obviously positive. If λ
f

2 < 0, one has, by the fact that β B
f
′
(d) = µ f (λ f

1 +2λ
f

2 d)> 0:

β
B
f (d) = µ

f
(

λ
f

0 +d
(

λ
f

1 +λ
f

2 d
))

> µ
f
(

λ
f

0 +d
(

λ
f

1 +2λ
f

2 d
))

> 0.

Partial disclosure The payoff function Πp(x,z) is pseudo-concave in z because

∂zxΠp(x,z) =
4a(2− s− s2)− c(8− s(4+3s))+8x− s2(2x+ z)

4b(c−d)(1− s)(4− s2)

>
8x+ s(c(4− s)− s(2x+ z))

4b(c−d)(1− s)(4− s2)
, by (3)

≥ 4c(1− s)s+8x
4b(c−d)(1− s)(4− s2)

> 0, because x,z≤ c.

Using the solution for πW (x,y),πL(z) the coefficients of the quadratic bid function, β B
p (x) =

µ p
(
λ

p
0 +λ

p
1 x+λ

p
2 x2
)
, are:

µ
p =

1
48b(1− s)(4− s2)2 > 0

λ
p
2 = 64−60s2 +9s4 > 0

λ
p
1 = 64(3a−3c+d)−12(18a−5(3c−d))s2−12(a− c)s3 +9(4a−3c+d)s4

> d(64−60s2 +9s4)+3cs(32+ s(4−3(4− s)s))> 0, by (3)

λ
p
0 = 3c2s2(20− s(8+7s))−12a(2− s− s2)(2cs2−d(8+ s(4−3s)))

+12cds3 +d(d−3c)λ p
2 .

(A.2)
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Monotonicity follows from λ
p
1 ,λ

p
2 > 0. To prove that the non-negativity of bids is assured note that

∂d(β
B
p (d)) = 6µp

(
64(a− c+d)−12(6a−5c+5d)s2−4(a− c)s3 +3(4a−3c+3d)s4)

> d(64−60s2 +9s4)+ cs(32+ s(4−3(4− s)s))> 0, by (3)

lim
d→c

β
B
p (d) =

(2a− c)c(1+ s)
b(4− s2)

> 0.

Therefore, if d is sufficiently bounded away from zero, one has β B
p (d)≥ 0.

No disclosure The payoff function Πn(x,z) is pseudo-concave in z because, using (3) and the
fact that z≤ c:

∂zxΠn(x,z) =
1

2b(c−d)(1− s)(64−20s2 + s4)

(
2a(1− s)(2+ s)(16− s2)

−2c(32− s(16+ s(14− s− s2)))−ds4 +(64−20s2 + s4)x−2(4− s2)s2z
)

>
s(32c−16cs−2cs2 +2cs3−ds3)+(64−20s2 + s4)x

2b(c−d)(1− s)(64−20s2 + s4)
> 0.

Using πn
W (x,z),πn

L(z), the coefficients of the quadratic bid function, β B
n (x) = µn

(
λ n

0 +λ n
1 x+λ n

2 x2
)
,

are:

µ
n =

1
6b(1− s)(16− s2)2(4− s2)

> 0

λ
n
2 = 4(16− s2)(4− s2)(2− s2)> 0

λ
n
1 = 3a(4− s)2(1− s)(2+ s)(4+ s)(4+3s)−512(3c−d)

+ s2(3c(16− s2)(26+ s(5−3s))−d(416−46s2 + s4))

> 3cs(256+32s−64s2−4s3 +3s4)+d(512−416s2 +46s4− s6)> 0, by (3)

λ
n
0 = d2(16− s2)(32−24s2 + s4)−3a(16− s2)(1− s)(8cs2−d(4+ s)(8+(6− s)s))

−3cd(512− (16− s2)s2(26+(3− s)s))+24c2s2(20− s(16+(1− s)s)).

(A.3)

Again, the monotonicity is assured because λ n
1 ,λ

n
2 > 0. The non-negativity of bids is not assured for

all parameter values if d = 0. However, if d is sufficiently bounded away from zero, non-negativity
follows because, using (3),

∂d(β
B
n (d)) = 12µ

n
(

a(256−256s2−32s3 +31s4 +2s5− s6)

− c(256−208s2−32s3 +29s4 +2s5− s6)+d(256−208s2 +29s4− s6)
)

> 12µ
n
(cs(256+160s−48s2−28s3 + s4 + s5)

2+ s
+d(256−208s2 +29s4− s6)

)
> 0

lim
d→c

β
B
n (d) =

(2a− c)c(1+ s)
b(4− s2)

> 0.

A.2 Supplements to Cournot competition

Full disclosure Suppose the firm that won the auction had drawn the cost reduction x and the
firm that lost had drawn y. Then, the equilibrium strategies in the subsequent duopoly subgame on
the equilibrium path are:

qef
W (x) := argmax

q
πi
(
q,qef

L (x);c− x
)
, qef

L (x) := argmax
q

π j
(
q,qef

W (x);c
)
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This gives:

qef
W (x) =

(1+ s)((a− c)(2− s)+2x)
b(4− s2)

, qef
L (x) =

(1+ s)((a− c)(2− s)− sx)
b(4− s2)

.

Suppose firm 1 with cost reduction x unilaterally deviated from equilibrium and bid βC
f (z). If firm

1 won the auction, it plays its best reply to the predicted output strategy of firm 2, qef
L (z):

q f
W (x,z) := argmax

q
π1
(
q,qef

L (z);c− x
)
=

(1+ s)(2(a− c)(2− s)+(4− s2)x+ s2z)
2b(4− s2)

.

Whereas if it lost the auction, it plays q f
L(y) = qef

L (y), while firm 2 plays qef
W (y). Therefore, for all

combinations of x and z, the reduced form equilibrium payoffs of firm 1, contingent upon winning
or losing, are:

π
f

W (x,z) := π1

(
q f

W (x,z),qef
L (z);c− x

)
=

b
1+ s

q f
W (x,z)2

π
f

L (y) := π1

(
q f

L(y),q
ef
W (y);c

)
=

b
1+ s

q f
L(y)

2.

Using these, one can compute the expected payoff function of bidder 1, Π f (x,z), which has the
same form as under Bertrand competition. Π f (x,z) is pseudo-concave in z because

∂zxΠ f (x,z) =
(1+ s)(2(a− c)(2− s)+(4− s2)x+2s2z−ds2)

2b(c−d)(4− s2)
> 0.

Using π
f

W (x,z),π f
L (y) and (6) one finds the coefficients of the equilibrium bid function βC

f :

µ
f =

1+ s
6b(4− s2)2 > 0

λ
f

0 = d(4d(2− s2)+3(a− c)(8− (4− s)s2))> 0

λ
f

1 = 4d(2− s2)+3(a− c)(8− s3)> 0

λ
f

2 = 2(4+ s2)> 0.

(A.4)

Therefore, the assumed strict monotonicity and non-negativity of βC
f confirm.

Partial disclosure Suppose the firm that won the auction had drawn the cost reduction x and the
firm that lost had drawn y. Then, the equilibrium strategies in the subsequent duopoly subgame on
the equilibrium path must solve the requirements:

qep
W (x,y) = argmax

q
πi
(
q,qep

L (y);c− x
)
, qep

L (y) = argmax
q

∫ c

y
π j
(
q,qep

W (x,y);c
) dF(x)

1−F(y)
.

This yields:

qep
W (x,y) =

(1+ s)(4a(2− s)− c(8−4s− s2)+2(4− s2)x+ s2y)
4b(4− s2)

qep
L (y) =

(1+ s)(2a(2− s)− c(4− s)− sy)
2b(4− s2)

.
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Now suppose one firm, say firm 1, with cost reduction x, unilaterally deviated from equilibrium
and bid βC

p (z) rather than βC
p (x). If firm 1 won the auction, it plays its best reply to the predicted

strategy of firm 2, qep
L (y), which gives qp

W (x,y) = qep
W (x,y). Whereas if firm 1 lost the auction, it

plays qp
L(z) = qep

L (z) while firm 2 plays qep
W (y,z). Note that qp

W (x,y) is increasing in x and y and
qp

L(z) is decreasing in z.

Altogether, the reduced form payoff functions of firm 1, contingent upon winning/losing, are:

π
p
W (x,y) := π1(q

ep
W (x,y),qep

L (y);c− x) =
b

1+ s
qep

W (x,y)2

π
p
L (z) :=

∫ c

z
π1(q

ep
L (z),qep

W (y,z);c)
dF(y)

1−F(z)
=

b
1+ s

qep
L (z)2.

Using these, one can compute the expected payoff function of bidder 1, Πp(x,z), which has the
same form as under Bertrand competition. The payoff function Πp(x,z) is pseudo-concave in z
because

∂zxΠp(x,z) =
(1+ s)(4(a− c)(2− s)+ cs2 +2(4− s2)x+ s2z)

4b(c−d)(4− s2)
> 0.

Using π
p
W (x,y),π p

L (z), (10), and (3), one finds the coefficients of the equilibrium bid function βC
p :

µ
p =

1+ s
48b(4− s2)2 > 0

λ
p
0 = 12a(2− s)(2cs2 +d(8+4s− s2))−3c2s2(12−8s− s2)

+d2(64−28s2 + s4)−3cd(64−28s2 +4s3 + s4)

> d2(64−28s2 + s4)+3c2s2(4+ s(8+ s))+3cds(32+ s(20− s(4+ s)))> 0

λ
p
1 = 12a(16−6s2 + s3)+d(64−28s2 + s4)−3c(64−28s2 +4s3 + s4)

> d(64−28s2 + s4)+3cs(32+ s(20− s(4+ s)))> 0

λ
p
2 = 64−28s2 + s4 > 0.

(A.5)

Evidently βC
p (x) is strictly increasing and non-negative. Therefore, βC

p is indeed an equilibrium.

No disclosure Again, suppose the firm that won the auction had drawn the cost reduction x and
the firm that lost had drawn y. Then, the equilibrium strategies in the subsequent duopoly subgame
on the equilibrium path are:

qen
W (x) = argmax

q

∫ x

d
πi(q,qen

L (y);c− x)
dF(y)
F(x)

, qen
L (y) = argmax

q

∫ c

y
π j(q,qen

W (x);c)
dF(x)

1−F(y)
.

This yields:

qen
W (x) =

(1+ s)((a− c)(32−16s−2s2 + s3)+4cs2 +2ds2 +(32−8s2)x)
b(16− s2)(4− s2)

qen
L (y) =

(1+ s)((a− c)(32−16s−2s2 + s3)−8cs−ds3−2s(4− s2)y)
b(16− s2)(4− s2)

.

Again, suppose one firm, say firm 1, with cost reduction x, unilaterally deviated from equilibrium
and bid βC

n (z) rather than βC
n (x) and won the auction, it plays its best reply to the predicted strategy

of firm 2, qen
L (y):

qn
W (x,z) = argmax

q

∫ z

d
π1(q,qen

L (y);c− x)
dF(y)
F(z)

.
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This yields:

qn
W (x,z)=

(1+ s)(2(a− c)(32−16s−2s2 + s3)+4(2c+d)s2 +(64−20s2 + s4)x+ s2(4− s2)z)
2b(16− s2)(4− s2)

.

Note that qn
W (x,z) is increasing in x and z.

Whereas if firm 1 lost, it plays qn
L(z) = qen

L (z), which is decreasing in z, and firm 2 plays qen
W (y).

Altogether, the reduced form profit functions of firm 1, contingent upon winning/losing, are:

π
n
W (x,z) =

∫ z

d
π1(qn

W (x,z),qen
L (y);c− x)

dF(y)
F(z)

=
b

1+ s
qn

W (x,z)2

π
n
L(z) =

∫ c

z
π1(qen

L (z),qen
W (y);c)

dF(y)
1−F(z)

=
b

1+ s
qen

L (z)2.

Πn(x,z) is pseudo-concave in z:

∂zxΠn(x,z) =
1+ s

2b(c−d)(64−20s2 + s4)

(
2(a− c)(32−16s−2s2 + s3)

+(64−20s2 + s4)x+(8c+ds2)s2 +2s2(4− s2)z
)
> 0.

Using πn
W (x,z),πn

L(z), (13) and (3), the coefficients of the quadratic βC
n function are:

µ
n =

1+ s
6b(16− s2)2(4− s2)

> 0

λ
n
0 = 3(a− c)(512d−160ds2 +16ds3 +10ds4−ds5)+8d2(64−20s2 + s4)

+12as2(2c(16− s2)+d(8− s2))−24c2s2(12− s2)

>
1

2− s

(
8d2(16− s2)(2− s)2(2+ s)+24c2s2(8+12s− s3)

+3cds(512+64s−160s2 +8s3 +10s4− s5)
)
> 0

λ
n
1 = 2d(256−80s2 +7s4)+3(a− c)(512−160s2−16s3 +10s4 + s5)

+12as2(8− s2)> 0

λ
n
2 = 8(64−20s2 + s4)> 0.

Obviously, the assumed monotonicity and non-negativity of equilibrium bids confirm.

A.3 Payoff rankings

The innovator’s expected revenue is R = E(β (X(1:2)) =
∫ c

d β (x)dF(x)2, and one finds:

RB
n −RB

p =
(c−d)s3

96b(1− s)(64−20s2 + s4)2

(
192a(16− s2)(1− s)(2+ s)

+(c−d)s(1600−204s2 +5s4)− c(6144−3456s2 +192s4)
)

>
(c−d)2s4(1600−204s2 +5s4)

96b(1− s)(64−20s2 + s4)2 > 0, by (3)

RB
p−RB

f =
(c−d)2s2(28−5s2)

96b(1− s)(4− s2)2 > 0
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RC
f −RC

p =
(c−d)2s2(1+ s)(4−3s2)

96b(4− s2)2 > 0

RC
n −RC

f =
(c−d)s2(1+ s)

6b(64−20s2 + s4)2

(
12a(16− s2)(2− s)s+d(64−124s2 +9s4)

− c(64+384s−124s2−24s3 +9s4)
)
T 0 ⇐⇒ c S ϕ(a,d,s)

RC
f −RB

f =
(c−d)s2(2a(1− s)(4+(2− s)s)− c(2− s)(2− s−2s2)+d(4−3s2))

6b(1− s)(4− s2)2

>
d(2− s)(4−3s2)+ c(2((2− s2)2− s3)+4s−2s2− s3)

2− s
> 0, by (3)

RC
p−RB

p =
(c−d)s2

96b(1− s)(4− s2)2

(
32a(1− s)(4+(2− s)s)+3d(32−20s2 + s4)

− c(96−64s−60s2 +32s3 +3s4)
)

>
(c−d)s2

96b(1− s)(4− s2)2(2+ s)

(
3d(64+32s−40s2−20s3 +2s4 + s5)

+ c(64+160s−8s2−68s3−6s4−3s5)
)
> 0, by (3)

RC
n −RB

n =
(c−d)s2

3b(1− s)(16− s2)2(4− s2)

(
2d(96−46s2 +3s4)

+a(16− s2)(1− s)(16+8s− s2)− c(192−128s−92s2 +24s3 +6s4− s5)
)

>
(c−d)s2

3b(1− s)(16− s2)2(4− s2)(2+ s)

(
2d(2+ s)(96−46s2 +3s4)

+2c(64+160s−4s2−50s3− s4 +2s5)
)
> 0, by (3) .

Under Bertrand competition the surplus to be shared by firms and the innovator, T , and consumer
surplus, CS, are equal to:

T B
k =

∫ c

d

1
b(1− s)

(
(pek

W (x)− c+ x)2 +(pek
L (x)− c)2)2F(x)dF(x), k ∈ { f , p,n}

CSB
k =

∫ c

d

(
U(Qk

1,Q
k
2)− pek

W (x)Q f
1 − pek

L (x)Qk
2

)
2F(x)dF(x), k ∈ { f , p,n} .

There, Qk
i = Qi(pi, p j), p1 = pek

W (x), p2 = pek
L (x),k ∈ { f , p,n}. The Cournot case is similar and

hence omitted. We find:

T B
f −T B

p =
(c−d)2s2(4−3s2)

96b(1− s)(4− s2)2 > 0, T B
p −T B

n =
(c−d)2s4(64+20s2−3s4)

96b(1− s)(64−20s2 + s4)2 > 0

TC
f −TC

p =
(c−d)2s2(1+ s)(12− s2)

96b(4− s2)2 > 0, TC
p −TC

n =
(c−d)2s4(1+ s)(320−60s2 + s4)

96b(64−20s2 + s4)2 > 0

CSB
n −CSB

p =
(c−d)2s4(192−20s2− s4)

192b(1− s)(64−20s2 + s4)2 > 0, CSB
p−CSB

f =
(c−d)2s2(4+ s2)

192b(1− s)(4− s2)2 > 0

CSC
n −CSC

p =
(c−d)2s4(1+ s)(192−20s2− s4)

192b(64−20s2 + s4)2 > 0, CSC
p−CSC

f =
(c−d)2s2(1+ s)(4+ s2)

192b(4− s2)2 > 0.
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A.4 Supplement to conditional disclosure

Here we spell out the parts of the analysis that were not stated in Section 7, without explaining the
full construction that is similar to the previous analysis.

The “auxiliary” bid functions are:

βn(x) = µ
n (

λ
n
0 +λ

n
1 x+λ

n
2 x2)

µ
n =

1+ s
6b(16− s2)2(4− s2)

λ
n
0 = 3(a− c)(16− s2)((6s2− s3−32)d−8s2t)−8d2(64−20s2 + s4)

−12ds2(8− s2)t−96s2t2

λ
n
1 = 2s2(d(80−7s2)−6(8− s2)t)−3(a− c)(16− s2)(2− s)(4+ s)2−512d

λ
n
2 =−8(64−20s2 + s4)

β f (x) = β f (t)
t−d
x−d

+
(1+ s)(x− t)

6b(4− s2)2(x−d)

(
λ

f
0 +λ

f
1 x+λ

f
2 x2
)

β f (t) =
1+ s

6b(64−20s2 + s4)2

(
τ0 + τ1t + τ2t2)

τ0 = 8d2(256−144s2 +21s4− s6)+3(a− c)d(16− s2)(2− s)(64+32s−20s2−4s3 + s4)

τ1 = 2d(1024−768s2 +84s4− s6)+3(a− c)(16− s2)(2− s)(64+32s+12s2− s4)

τ2 = 4(512+96s2−30s4 + s6)

λ
f

0 = 3(a− c)((8− s3)t−2d(2− s)s2)−6ds2t +2(4+ s2)t2

λ
f

1 = 3(a− c)(8− s3)+8t−2s2(3d− t)

λ
f

2 = 2(4+ s2).

The functions Πn(x,z), Π f (x,z) have the properties:

∂zxΠn(x,z) =
1+ s

2b(c−d)(64−20s2 + s4)

(
ds4 +2(a− c)(2− s)(16− s2)+8s2t

+(64−20s2 + s4)x+2s2(4− s2)z
)
> 0

∂zxΠ f (x,z) =
(1+ s)(2(a− c)(2− s)−ds2 +(4− s2)x+2s2z)

2b(c−d)(4− s2)
> 0

Π f (x,z)−Πn(x,z) =
2s2(1+ s)(d− t)2(x− t)
b(c−d)(64−20s2 + s4)

.

The innovator’s expected revenue function is R(t) = µR
(
α0 +α1t +α2t2 +α3t3 +α4t4

)
, where α0

is a constant and

µR =
1+ s

6b(c−d)2(64−20s2 + s4)2

α1 = 4ds2(6(c2−a(c−d))(16− s2)(2− s)s+4d2(32−15s2 + s4)

+3cd(64− s(64− (4− s)s(8+3s))))

α2 =−6s2((2− s)((16− s2)(2c2s+2asd)+2c(32d−16as+(a+d)s3))+(16− s2)(12− s2)d2)

α3 = 4s2(64(c+4d)−4(8c+7d)s2 + cs4)

α4 =−s2(320−60s2 + s4).
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