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Abstract
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projection method using the Chebyshev polynomials as its basis, and the perturbation methods up
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1 Introduction

Initiated by Merz (1995) and Andofatto (1996), many studiesof business cycles choose to incor-

porate the search frictions introduced by Pissarides (1985) and Mortensen and Pissarides (1994)

in their characterization of the labor market. While various methods are employed to solve this

type of business cycle models with labor market search frictions, little effort has been made to

compare the performance of these solution methods. I present a baseline model of this type, and

solve it using projection and perturbation methods under the conventional calibration. Whereas the

approximated solutions provided by these two classes of methods are different in accuracy, I find

the simulated moments based on them are very similar in value.

The projection methods introduced by Judd (1992) have been shown to be able to produce a

highly accurate approximation to the true policy function of a large class of DSGE models, and

have therefore often been used as the reference solution of amodel that has no known closed form

solution, see Aruoba et al. (2006) and Caldara et al. (2012) for example. The projection I im-

plement approximates the true solution of the model with a linear combination of the Chebyshev

polynomials, and pins down the coefficients of the linear combination by minimizing a residual

function derived from the Euler equations of the model at thenodes of the Chebyshev polyno-

mials. The perturbation method introduced by Gaspar and Judd (1997) approximates the policy

function with a Taylor expansion, and solves for the coefficients of the expansion from the equa-

tions resulting from successive differentiation of the equilibrium conditions of the model. With

the perturbation method I approximate the policy rule up to third order for both the level and

log specifications of the model. Then I implement Den Haan andMarcet’s (1994) accuracy test

and the Euler equation error test from Judd (1992) and Judd (1998) to evaluate the quality of the

approximations produced by the two methods.

Of particular interest is that the equilibrium of the model is characterized by two intertemporal

Euler equations. Besides the standard consumption Euler equation, employment is endogenously

determined and also characterized by an intertemporal Euler equation. For each approximation and

measured by the statistics of the two accuracy tests, I find that the consumption Euler equation is

always better satisfied than the employment Euler equation.The projection approximation achieves

the highest degree of accuracy in satisfying both of the two Euler equations, and the third order
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perturbation in levels is the second-best performing approximation. In particular, Den Haan and

Marcet’s (1994) test suggests that the first order perturbation in levels (the linear approximation)

is superior to the first order perturbation in logs (log-linearization) in satisfying the employment

Euler equation. For the consumption Euler equation, the Euler equation error test suggests that the

linear approximation performs better than the log-linearization, as noted by Aruoba et al. (2006)

in their comparison of solution methods for a business cyclemodel where labor supply is also

endogenously determined but characterized by an intratemporal Euler equation.

As above, the two accuracy tests complement each other in evaluating the approximations

of this model. In practice, the Euler equation error test is often conducted on a state variable

grid whose size is pre-specified merely with the guidance of the distributional properties of the

state variables, without taking into account the correlation among the state variables implied by

the corresponding approximation itself. As noted by Judd etal. (2010) and Judd et al. (2012),

some regions on such a grid will not be visited in the equilibrium of the model.1 Indeed, in this

model, such redundant regions exist and the Euler equation errors computed in those regions are

uninformative in evaluating the approximations. Den Haan and Marcet’s (1994) test, however,

builds up its test statistic using the simulated time seriesin which the correlation among the state

variables as the restraint on the realizations has been enforced. Consequently, this test examines the

accuracy of an approximation essentially in its associatedstate space where it ought to be accurate.

One drawback of Den Haan and Marcet’s (1994) test is that the results do not have an economic

interpretation, but the results from the Euler equation error test do.

Although different in accuracy, all the approximations of this model produce similar simulated

moments. This similarity follows from the fact that in the neighborhood of the deterministic steady

state of the model, all the approximations behave similarly, and most of their realizations fall in

that neighborhood in simulation. In recent literature, Petrosky-Nadeau and Zhang (2013) compare

the performance of a spline approximation with the perturbation in logs up to second order in solv-

ing Hagedorn and Manovskii’s (2008) model and find that the simulated moments produced by

log-linearization is significantly different from those generated by the accurate spline approxima-

tion. Aside from that capital is not included, Hagedorn and Manovskii’s (2008) model assumes a

1Instead of focusing on computing the Euler equation error, they make use of this observation to develop the projec-
tion methods on the realized (in simulation) state space only, for the purpose of mitigating the curse of dimensionality
when solving models with a large number of state variables.
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CES type of matching function, forcing the realization of the vacancy-filling rate to fall in between

zero and one (see den Haan et al. (2000)). The model in this paper follows Merz (1995), Andofatto

(1996), Pissarides (2000), Shimer (2005), Pissarides (2009) and many others in assuming a stan-

dard Cobb-Douglas matching function, and interprets the vacancy-filling rate that exceeds unity

as, following Den Haan and De Wind (2012), being due to firms hire more than one workers for a

posted vacancy.

The rest of the paper is organized as follows. The real business cycle model with labor market

search is specified in section2. In section3, I present the perturbation and projection approxima-

tions to the model with the calibration. The numerical results and implications of the approxima-

tions are analyzed in section4. Section5 concludes.

2 The Stochastic Growth Model with Labor Market Search

In this section, I lay out the model and characterize the equilibrium. The model embeds a Mortensen-

Pissarides labor market search framework into an otherwisestandard real business cycle model,

and is parameterized close to the way described in Merz (1995) and Andofatto (1996).

2.1 The model

The economy is populated by infinitely lived, identical households whose preferences are repre-

sented by the following utility function

U(ct,nt) = lnct −
n1−1/γ

t

1−1/γ
(1)

wherect is consumption,nt the fraction of employed family members andγ the negative of the

Frisch elasticity of labor supply. The model assumes only two states for a family member, em-

ployed or unemployed. The fraction of the unemployed familymembers therefore writes

ut = 1−nt(2)

Under appropriate assumptions on the matching function, the externality generated by labor

market search activities can be internalized and thereforethe model can be solved as a social

planner’s problem. The social planer evaluates the social welfare represented by the following
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value function

V(kt ,nt ,zt) = max
ct ,vt

{

U(ct,nt)+βEtV(kt+1,nt+1,zt+1)

}

(3)

whereβ ∈ (0,1) is the discount factor,kt the capital stock,vt the vacancy andzt a stochastic

productivity process of the form

zt = ρzt−1+ εz,t , εt ∼ N (0,σz)(4)

whereρ ∈ (0,1) is the persistence parameter of the process andεt the productivity shock, normally

and identically distributed with zero mean and standard deviationσz. The maximization is subject

to the following constraints

kt+1 = (1−δ)kt +F(zt ,nt ,kt)−ct −κvvt −κu(1−nt)(5)

nt+1 = (1−χ)nt +M((1−nt),vt)(6)

where (5) is the aggregate resource constraint withδ ∈ (0,1) the depreciation rate of capital stock,

κv the vacancy posting cost andκu the cost of job search, both assumed to be constant.F(zt ,nt,kt)

is the production function and assumed to take the Cobb-Douglas form

F(zt,nt ,kt) = ezt kα
t n1−α

t(7)

whereα ∈ (0,1) is the capital share. The capital stock in the next period therefore is the sum of

current capital after depreciation, and the current outputnet of consumption and two types of costs

incurred by search and matching activities in labor markets.

The dynamic of aggregate employment is described by (6) with χ ∈ (0,1) the exogenous job

separation rate, assumed to be constant andM((1−nt),vt) the matching function. The employment

in the next period therefore is the sum of current employmentthat has not been destroyed, and the

new employment generated by the matching function. Following Merz (1995), Andofatto (1996),

Pissarides (2000), Shimer (2005), Pissarides (2009) and many others, the matching function is

assumed Cobb-Douglas

M((1−nt),vt) = m0v1−η
t (1−nt)

η(8)

wherem0 is a constant scaling factor andη ∈ (0,1) the elasticity of the matching function with

respect to unemployment.

As is usual in labor market search and matching literature, the labor market tightness is defined
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as the ratio of the vacancy to the unemployment

θt ≡
vt

1−nt
=

vt

ut
(9)

The job finding rate is a function of the labor market tightness, measuring the rate at which

unemployed workers find jobs, and is defined as the ratio of thejob match to the unemployment

ft ≡
Mt

1−nt
=

Mt

ut
(10)

The vacancy filling rate is also a function of the labor markettightness, measuring the rate at

which vacant jobs become filled, and is defined as the ratio of the job match to the vacancy

qt ≡
Mt

vt
(11)

Both the job finding and vacancy filling rate are probabilities, and should lie between zero

and one. The vacancy filling rate, however, can potentially exceed unity in simulation when the

matching function takes the Cobb-Douglas form (see den Haanet al. (2000, p. 485)). To avoid

introducing nonsmoothness into the policy function since in that case the perturbation methods

cannot be applied, I do not restrictqt to be less than one. The realization ofqt that exceeds unity

is interpreted as that firms hire more than one worker on each posted vacancy (see Den Haan and

De Wind (2012, p. 1480)).

2.2 Characterization

The equilibrium of the economy is characterized by, apart from the stochastic productivity process

(4), the resource constraint (5) and aggregate employment dynamic (6), the Euler equation for

consumption equalizing the expected present-discounted utility value of postponing consumption

of one period to its utility value today

Uc,t = βEt

[

Uc,t+1

(

1−δ+Fk,t+1

)]

(12)

where

Uc,t =
1
ct

(13)

Fk,t = αezt kα−1
t n1−α

t(14)

and the Euler equation for employment equalizing the marginal loss in welfare due to vacancy cre-

ation, in terms of utility, to its expected present-discounted marginal contribution to social welfare
κv

Mv,t
Uc,t = βEt

[

Uc,t+1

(
Un,t+1

Uc,t+1
+Fn,t+1+κu+

κv

Mv,t+1

(

1−χ+Mn,t+1

))]

(15)
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where

Un,t =−n−1/γ
t(16)

Fn,t = (1−α)eztkα
t n−α

t(17)

and

Mv,t = (1−η)m0v−η
t (1−nt)

η(18)

Mn,t =−ηm0v1−η
t (1−nt)

η−1(19)

This marginal contribution, net of the disutility from work, is the sum of the marginal labor pro-

ductivity, the saved job search cost and the its potential continuation, i.e., in case the job match

is not destroyed.Mn,t+1 corrects the continuation as the (un)employment stock has already been

changed by the vacancy creation.

3 Solution Methods

The model described in section2 does not have a known closed form solution, and needs to be

solved with numerical methods. I solve the model using perturbation and a particular type of

projection method, that is, the spectral method with Chebyshev polynomials.

The Perturbation method as described in Gaspar and Judd (1997), Judd and Guu (1997), Judd

(1998, ch. 13), Jin and Judd (2002) , Schmitt-Grohé and Uribe (2004) and many others, assumes

the policy function exists, then successively differentiates the equilibrium conditions and solve the

resulting system of equations evaluated at typically the deterministic steady state to recover the

coefficients of a Taylor expansion of a desired order of the policy function. Under appropriate

smoothness assumptions, Taylor’s theorem guarantees the expansion converges to the true policy

function as the order of expansion approaches infinity.

The spectral method specifies the approximated policy function as a linear combination of

Chebyshev polynomial basis, as noted in Judd (1992, p. 421),imposing smoothness conditions on

the approximated policy function, and then solves for the coefficients of the linear combination

by minimizing the residual function defined by the equilibrium conditions of the model at the

chosen collocation points, i.e., the zeros of the Chebyshevpolynomial basis. As noted in Aruoba

et al. (2006, p. 2488), such a minimization process deliversthe best trade-off between accuracy

and the ability of handling a large number of basis functions, and by the Chebyshev interpolation
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theorem, the approximation error becomes arbitrarily small as the number of collocation points

used in approximation approaches infinity.

3.1 Perturbation

The equilibrium conditions of the model, that is, (4)-(6) and the two Euler equations (12) and (15)

can be cast into the following problem

0= Et [ f (yt+1,yt ,yt−1,εt)](20)

where theny-dimensional vector-valued functionf : Rny ×R
ny ×R

ny ×R
ne → R

ny is assumed

CM with respect to all its arguments, whereM is the order of approximation to be introduced

subsequently;yt ∈ R
ny is the vector ofny endogenous and exogenous variables; andεt ∈ R

ne the

vector ofne exogenous shocks,2 whereny andne are positive integers (ny,ne ∈ N). The elements

of εt are assumed i.i.d. withE [εt ] = 0 andE
[

εt
⊗[m]
]

finite ∀m≤ M.3

Following standard practice in DSGE perturbation, I introduce an auxiliary parameterσ ∈ R

to scale the risk in the model.4 The stochastic model under study in (20) corresponds toσ = 1 and

σ = 0 represents the deterministic version of the model. Indexing solutions withσ

yt = y(σ,zt), y : R×R
nz → R

ny(21)

with the state vectorzt given by5

zt =

[
yt−1

εt

]

∈ R
nz×1, wherenz= ny+ne(22)

To enable a standard DSGE perturbation, I assume the vector functiony exists and isCM with

respect to all its arguments. Time invariance of the policy function and scaling risk imply

yt+1 = ỹ(σ, z̃t+1), z̃t+1 =

[
yt

σεt+1

]

∈ R
nz×1, ỹ : R×R

nz → R
ny(23)

The notation,y and ỹ, is adopted to track the source (throughyt or yt+1) of derivatives of the

policy function. This is necessary as (i) the ˜zt+1 argument of ˜y is itself a function ofy through its

dependance onyt , and (ii)σ scalesεt+1 in the z̃t+1 argument of ˜y, but notεt in thezt argument of

2Nonlinearity or serial correlation in exogenous processescan be captured by including the processes themselves
in the vectoryt and including functions inf that specify the nonlinearity or correlation pattern.

3The notationεt
⊗[m] represents Kronecker powers.εt

⊗[m] is the m’th fold Kronecker product ofεt with itself:
εt ⊗ εt · · ·⊗ εt
︸ ︷︷ ︸

m times

.

4This formulation follows Adjemian et al.’s (2011) Dynare, Anderson et al.’s (2006) PerturbationAIM and Michel
(2011). Jin and Judd’s (2002) or Schmitt-Grohé and Uribe’s(2004) model classes can be rearranged to fit (20).

5Only in this section, i.e., section3.1, zt is used to denote the state vector of the policy function. In anywhere else,
zt denotes the productivity process.
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y. This follows from the conditional expectations in (20): εt realizes at timet and is in the time

t information set—hence, it is not scaled byσ; however,εt+1 has not yet been realized and is the

source of risk—hence, it is scaled byσ.6

Inserting the policy functions foryt andyt+1—equations (21) and (23)—into (20) yields

0= Et

[

f

(

ỹ

(

σ,
[
y(σ,zt)
σεt+1

])

,y(σ,zt),zt

)]

= F(σ,zt)(24)

a function with argumentsσ andzt . 7 I will construct a Taylor series approximation of the solution

(21) around a deterministic steady state defined as follows

Definition 3.1. Deterministic Steady State

Let y∈ R
ny be a vector that solves the policy function (21) with εt = 0 andσ = 0

ȳ= y(0,z), wherez=

[
y
0

]

(25)

In practice, the deterministic steady state value is solvedfrom the deterministic version of (24),

i.e., from 0= f (y,y,z).

With f andy both being vector-valued functions that take vectors as arguments, their partial

derivatives form hypercubes. I use the method of Lan and Meyer-Gohde (2013) that differenti-

ates conformably with the Kronecker product, allowing me tomaintain standard linear algebraic

structures to derive my results.

Definition 3.2. Matrix Derivatives

Let A(B) : Rs×1 → R
p×q be a matrix-valued function that maps an s×1 vector B into an p×q

matrix A(B), the derivative structure of A(B) with respect to B is defined as

AB ≡ DBT{A} ≡
[

∂
∂b1

. . . ∂
∂bs

]

⊗A(26)

where bi denotes i’th row of vector B,T indicates transposition; n’th derivatives are

ABn ≡ D
n
(BT)n{A} ≡

([
∂

∂b1
. . . ∂

∂bs

]⊗[n]
)

⊗A(27)

6See also Anderson et al. (2006) and Michel (2011) for similardiscussions.
7Note thatεt+1 is not an argument ofF as it is the variable of integration inside the expectations. I.e.,

F(σ,zt) =

∫
Ω

f
(
ỹ
(
σ,
[
y(σ,zt)σεt+1

])
,y(σ,zt ),zt

)
φ(εt+1)dεt+1

whereΩ is the support andφ the p.d.f. ofεt+1. Thus, whenσ = 0, εt+1 is no longer an argument off and the integral
(and hence the expectations operator) is superfluous, yielding the deterministic version of the model.
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I assume the policy function, (21), admits a Taylor series approximation up toM’th order at a

deterministic steady state which I write as8

yt ≈
M

∑
j=0

1
j!

[
M− j

∑
i=0

1
i!

yzj σi σi

]

(zt −z)⊗[ j ](28)

whereyzj σi ∈R
ny×n j

z is the partial derivative of the vector functiony with respect to the state vector

zt j times and the perturbation parameterσ i times evaluated at the deterministic steady state using

the notation of definition3.2. That is

yzjσi ≡ D
j+i

zT j
t−1σi

{y(σ,zt)} ≡
(
[

∂
∂z1,t−1

. . . ∂
∂znz,t−1

]⊗[ j ]
⊗
(

∂
∂σ

)⊗[i]
)

⊗y(σ,zt)(29)

=

(
[

∂
∂z1,t−1

. . . ∂
∂znz,t−1

]⊗[ j ]
(

∂
∂σ

)i
)

⊗y(σ,zt)

whereT indicates transposition and the second line follows asσ is a scalar. The terms
[

∑M− j
i=0

1
i! yzj σi σi

]

in (28) collect all the coefficients associated with thej ’th fold Kronecker product of the state vector,

(zt −z). Higher orders ofσ correct the Taylor series coefficients for risk by successively opening

the coefficients to higher moments in the distribution of future shocks.9 At third order and for

σ = 1, the Taylor approximation (28) writes

yt ≈ y+
1
2

yσ2 +
1
6

yσ3 +

[

yz+
1
2

yσ2z

]

(zt −z)+
1
2

yz2 (zt −z)⊗[2]+
1
6

yz3 (zt −z)⊗[3] = ŷt(30)

where only terms with nonzero coefficients have been included and ˆ highlights that (30) is an

approximation of the policy function (21). To solve for the coefficients of the third order expansion

(30), I take the collection of derivatives off in (24) from the previous order (for the first order, I

start with f itself) and

1. differentiate the derivatives off from the previous order with respect to all their arguments

2. evaluate the partial derivatives off and ofy at the deterministic steady state

3. apply the expectations operator and evaluate using the given moments

4. set the resulting expression to zero and solve for the unknown partial derivatives ofy.

The resulting equation foryz at first order takes the form of a matrix quadratic.10 All the other

8See appendixA.1 for a derivation of the Taylor series approximation.
9A similar interpretation can be found in Judd and Mertens (2013) for univariate expansions and in Lan and Meyer-

Gohde (2013) for expansions in infinite sequences of innovations.
10See, Uhlig (1999) for example.
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unknown coefficients, as noted by Judd (1998, ch. 13), Jin andJudd (2002), Schmitt-Grohé and

Uribe (2004) and others, are solutions to linear equations taking the results from lower orders as

given.11

3.2 Projection

The spectral method seeks an approximation of the policy function on the grid of state variables.

The lower and upper bounds of this grid are chosen such that, as noted in Aruoba et al. (2006,

p. 2486) and Caldara et al. (2012, p. 196), they will bind onlywith an extremely low probability.

The deterministic steady state as given in definition3.1of the state variables is also included in the

grid as it is a point that can be determined before approximation, see Judd (1992, p. 429). Given

there are three state variables in the model, i.e., capital,employment and productivity, the grid of

approximation is a cube,[kmin,kmax]× [nmin,nmax]× [zmin,zmax] where the subscriptsmin andmax

indicate the lower and upper bounds of the state variables they attach to. Along each of the three

dimensions, the grid points are chosen to be, up to a linear transformation, the roots of Chebyshev

polynomials that lie in the interval between−1 and 1.

The two policy functions of consumption and vacancy are bothfunctions of state variables and

are approximated with the following linear combination of the Chebyshev basis

ĉt = X(kt ,nt,zt)Θc(31)

v̂t = X(kt ,nt,zt)Θv(32)

where ˆ indicates these are approximations.Θc andΘv are two vectors of coefficients to be de-

termined. Both ˆct and v̂t are of dimension(ng × 1) with ng the number of grid points. The

multidimensional Chebyshev polynomial basisX(kt ,nt,zt) on which the approximation of both

consumption and vacancy are built is the Kronecker tensor product of three Chevyshev polynomial

basis of capital, employment and productivity respectively. The details of constructingX(kt,nt ,zt)

are relegated to the appendix.

The two Euler equations (12) and (15) that characterize the policy function of consumption and

11All these linear equations can be cast into a generalized Sylvester form, see Lan and Meyer-Gohde (2014).
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vacancy can be written as the following functional

N (ct ,vt) =







Uc,t −βEt

[

Uc,t+1

(

1−δ+Fk,t+1

)]

κv
Mv,t

Uc,t −βEt

[

Uc,t+1

(

Un,t+1
Uc,t+1

+Fn,t+1+κu+
κv

Mv,t+1

(

1−χ+Mn,t+1

))]






=

[
0
0

]

(33)

Inserting the approximated policy functions (31) and (32) in the previous functional, noting

thatkt+1 andnt+1 can be calculated using the aggregate resource constraint (5) and the dynamic

of aggregate employment (6) given the state variable grid and approximated policy function, and

approximating the expectation with, following Judd (1992), Gauss-Hermite quadrature method

yields the residual function. The unknown coefficients of the approximated policy function,Θc

and Θv, are solved from the residual function using den Haan and Marcet’s (1990) functional

iteration, taken the third order perturbation in levels as the initial guess. See the appendix for

details.

3.3 Calibration

The model is quarterly calibrated. The parameter values as summarized in Table1, are taken from

Merz (1995), Petrongolo and Pissarides (2001), Shimer (2005) and Pissarides (2009)

[Table 1 about here.]

In particular, the steady state values of the labor market tightness and aggregate employment,θss

andnss respectively, are taken from Shimer (2005) and Pissarides (2009). The vacancy posting

cost,κv, is chosen, using the projection approximation, such that the standard deviation of vacancy

relative to that of output is equal to 7.31 as reported in Merz (1995).12 Then solving the model in

steady state pins downκu, the cost of job searching.

4 Numerical Results

This section first reports the simulated moments of the modelusing the projection approximation

which will be shown as the top performing one among all the approximations considered in this

paper. Such set of moments reveals the model’s ability in replicating some of the key regularities

12The projection solution is used to calibrate the model as it is most accurate approximation of the policy function
evaluated with Den Haan and Marcet’s (1994) accuracy test and the Euler equation error test. The detailed discussion
of accuracy is presented in the next section.
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of the business cycle and in particular, of the labor markets. Second, the simulated density of all

the approximations will be presented. Third, the quality ofthe approximations will be examined

by implementing Den Haan and Marcet’s (1994) test and the Euler equation error test from Judd

(1992) and Judd (1998). Given the difference in accuracy among all the approximations and to

study the implications of such difference, the simulated moments of all the approximations will be

computed for comparison.

4.1 Simulated Moments

The model is simulated using the approximation generated bythe projection method. This ap-

proximation outperforms all the perturbations in terms of accuracy. To this end, it is chosen as the

benchmark that represents the model’s ability of explaining the observed aggregate fluctuations, in

particular the fluctuations of the labor market variables asthey reflect the contribution of the search

and matching framework incorporated in the model.

The simulation environment is similar to that specified in Merz (1995), Shimer (2005) and

Petrosky-Nadeau and Zhang (2013): the model is simulated 1000 times. Each simulation contains

412 observations with the first 200 discarded. As the model isquarterly calibrated, each simulation

contains effectively the observations of 212 quarters, corresponding to about 53 years of quarterly

data presented in Shimer (2005) and Pissarides (2009). As the projection method approximates

the model in levels, the simulated time series are transformed by the natural logarithm, and then

detrended using the Hodrick-Prescott filter with a quarterly smoothing parameter 1600. From the

1000 simulations there are 1000 sets of moments, and only theaverage of these simulated moments

is reported.

[Table 2 about here.]

The model performs well in generating relative volatilities in frequently reported business cy-

cle aggregates such as consumption and capital stock. Alongthe labor market dimension, the

volatility of labor market tightness relative to that of thelabor productivity,σθ/σp, reaches 10.33.

Whereas it is about half of 19.10 reported by Shimer (2005), it already exceeds 7.56, a plausible

target of a model with constant job destruction and productivity shock only (see Pissarides (2009)).

Moreover, the model is capable of replicating the negatively sloped Beveridge curve, i.e.,ρ(u,v) in
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table2. This is because that the aggregate unemployment as a state variable will not immediately

respond to an increase in vacancy creating activities induced by a positive productivity shock. The

household therefore cannot send more family members to searching which will lead to an increase

in unemployment and a positive relationship between vacancy and unemployment. Given that the

model assumes constant vacancy posting and searching cost,incorporating no frictions other than

search, a richer structure is needed to generate anρ(u,v) that closer to the empirical target.

4.2 Simulated Density

Before performing accuracy tests, all the approximations are simulated for the estimation of den-

sity. Such simulated density indicates, as noted in Aruoba et al. (2006), a plausible range of the

state space in which accuracy test like the Euler equation error test is conducted. For local approx-

imations like the perturbations, such indicated ranges of the state space are particularly useful in

evaluating their ability of producing global implications.

Each approximation is simulated once, with 101,000 observations and the first 1000 discarded.

For comparison, all approximations are fed with the same sequence of exogenous shocks in simu-

lation with which the density is estimated based on a normal kernel function.

[Figure 1 about here.]

Figure1 depicts the simulated density of the two endogenous state variables, i.e., capital and

employment, and other labor market variables. Note that foreach variable, the simulated densities

based on different approximations are similar and roughly centered around the deterministic steady

state. Capital and employment range from 29 to 40 and from 0.90 to 0.96 respectively. The Euler

equation error test will accordingly be conducted on such ranges. Besides, the simulated density

of vacancy filling rateq shows that under the calibration in section3.3, most of the realizations

of this variable fall in between 0.6 and 1, exceeding unity very infrequently. Moreover, giventhe

Cobb-Douglas matching function and the values ofη andm0, the realizations ofq that are smaller

thanm0 correspond to those of labor market tightnessθ that are larger than one. This implies

that this calibrated model allows the vacancies to outnumber the unemployment workers, whereas

it still captures the uncoordinated nature of the search process as the job finding ratef does not

exceed unity as shown by its simulated density.13

13Andofatto (1996) formulates this uncoordinated nature of the search process asM(v,(1−n)) ≤ min{v,(1−n)},
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Petrosky-Nadeau and Zhang (2013) have noted that, when solving Hagedorn and Manovskii’s

(2008) model using den Haan and Marcet’s (1990) parameterized expectations algorithm with a

spline basis, the vacancy rate can fall below zero at nevertheless an extremely low frequency,

and therefore incorporated a nonnegativity constraint on vacancy in their characterization of the

model. Albeit the labor market in the model economy resembles that described by Hagedorn

and Manovskii (2008) in many respects, the simulated density of v shows that the realization of

vacancy remains positive at all frequencies, centering at its deterministic steady state value 0.043

and ranging from about 0.02 to 0.07, which covers roughly 50% derivation from the steady state

on each side. Given that the model generates about 1% deviation in labor productivity from its

steady state, this range of vacancy is sufficiently large to accommodate the empirical observation

that the vacancy is about 10 times more volatile than the labor productivity as reported by Shimer

(2005).

4.3 Den Haan and Marcet’s (1994) Accuracy Test

All the approximated solutions are firstly sent to Den Haan and Marcet’s (1994) accuracy test to

evaluate their performance in a dynamic and simulation-based environment. To examine how well

the approximations satisfy the Euler equation for consumption and employment respectively, the

test statistics are calculated and reported separately forthe two Euler equations. Starting with the

consumption Euler equation, inserting the functional formof the marginal consumption (13) and

capital productivity (14) in (12) yields

c−1
t = Et

[

βc−1
t+1

(

αezt+1kα−1
t+1 nα−1

t+1 +1−δ
)]

(34)

Defining the expression in the expectation operator as a new variable

φt+1 ≡ βc−1
t+1

(

αezt+1kα−1
t+1 nα−1

t+1 +1−δ
)

(35)

Then the forecast error ofφt+1 writes

ut+1 = Et(φt+1)−φt+1 = c−1
t −φt+1(36)

If the solution were exact, thenut+1 would have zero mean, and satisfy the following

E [ut+1⊗h(xt)] = 0(37)

which impliesM(v,(1−n))/(1−n)≡ f (θ)≤ min{θ,1} with the constant return to scale assumption on the matching
functionM(v,(1−n)). Therefore, whenθ > 1, the search friction still exists and is nontrivial iff (θ) < 1.
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for any functionh : Rk → R
q and for anyk-dimensional vectorxt belongs to the information

set on which the conditional expectation in the Euler equation (34) is formed. To evaluate the

performance of an approximation, inserting its simulationin the sample analog of the previous

equation

MT = (1/T)
T

∑
t=1

usim
t+1⊗h

(
xsim

t

)
(38)

wheresim indicates the corresponding simulated series andT the length of simulation, and checking

if MT is close to zero. Note that,MT could be made small by taking ah(·) with small function

values, and owing to sampling error,MT will not be exactly equal to zero. To avoid such problems,

Den Haan and Marcet (1994) construct the following test statistic, with the null hypothesis that the

approximation under evaluation is accurate, i.e., (37) holds for this approximation, to examine if

MT is significantly different from zero

JT = TM′
TW−1

T MT(39)

whereWT is some weighting matrix, chosen to take the following form

WT = (1/T)
T

∑
t=1

[(
usim

t+1⊗h
(
xsim

t

))(
usim

t+1⊗h
(
xsim

t

))′]
(40)

When the solution is exact andT goes to infinity,JT converges to aχ2 distribution with, as

the Euler equation (34) is of dimension 1×1, q×1 degrees of freedom. If the value ofJT of an

approximation falls in the lower or upper critical region oftheχ2 distribution, then there is evidence

against the accuracy of that approximation. The test statistic for the employment Euler equation

can be constructed following the steps above14: inserting the functional form of the marginal

disutility of labor (16), labor productivity (17) and two first derivatives of the matching function

(18) and (19) in (15) and noting the definition ofqt , ft andθt yields

κv

(1−η)qtct
= Et

[

β
ct+1

(

−ct+1

n1/γ
t+1

+(1−α)ezt+1

(
kt+1

nt+1

)α
+κu+

κv(1−χ−η ft+1)

(1−η)qt+1

)]

(41)

Defining the expression in the expectation operator as

φt+1 ≡
β

ct+1

(

−ct+1

n1/γ
t+1

+(1−α)ezt+1

(
kt+1

nt+1

)α
+κu+

κv(1−χ−η ft+1)

(1−η)qt+1

)

(42)

and the forecast error ofφt+1 writes

ut+1 =
κv

(1−η)qtct
−φt+1(43)

Inserting the involved simulated series in the previous equation yieldsusim
t+1 with which the test

14To save notation,φt+1 andut+1 are recycled from (35) and (36), and will be redefined below.
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statistic as given in (39) can be constructed for the employment Euler equation.

As noted by Aruoba et al. (2006), the null hypothesis will be rejected for all approximations

if T is sufficiently large. On the other hand, Den Haan and Marcet (1994) note that an accu-

rate/inaccurate approximation could fail/pass the test with a plausibleT simply by chance. To

control for such problems, each approximation is simulated1000 times and each simulation con-

tains 1000 observations with first 500 discarded. These 1000simulations produce 1000JT values

for each approximation and the percentages of theJT values in the upper and lower 5% critical re-

gions of the distribution are documented. For an accurate approximation, both the two percentages

should be close to 5 as noted by Aruoba et al. (2006). An approximation is considered inaccurate,

however, if itsJT value falls in the upper 5% region too often, and rarely dropsin the lower 5%

region.

[Table 3 about here.]

Table3 reports the test results. As can be seen, all the approximations satisfy the consump-

tion Euler equation well, since all the percentages in column 2 and 3 of the table are close to 5.

Meanwhile, as all the percentages in these two columns are similar in value, it is so far unclear

which solution method is preferred in terms of accuracy. Forthe employment Euler equation,

however, projection provides the most accurate approximation, outperforming perturbation of all

three orders, either in levels or in logs, as indicated by thepercentages in the last two columns.

Among all the perturbation approximations for the employment Euler equation, the first order

perturbation in logs (log-linearization) is the least accurate one since itsJT falls in the upper critical

region too often (40.8 percent) and seldomly drops in the lower critical region (2.0 percent). Still

at first order, the approximation in levels (linearization)achieves a much higher degree of accuracy

with the upper tail percentage down to 12 and lower tail percentage rising to 4.2. Aruoba et al.

(2006) have also observed, when they compare solution methods for a real business cycle model

with endogenous labor choice, that linear approximation outperforms log-linearization, contra-

dicting to the common practice. In comparison with linear approximations, second and third order

perturbation further drives down the upper tail percentage, exhibiting a higher degree of accuracy.

Den Haan and Marcet’s (1994) test evaluates how well the simulation of an approximation

fits the Euler equations, and therefore has an implication for the accuracy of the simulation-based
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results like simulated moments. Moreover, the construction of the test statistic requires no approx-

imation of the conditional expectation, which could be a potential source of inaccuracy in addition

to that in the approximation itself.15 One drawback of the test is that there is no economic inter-

pretation of the test result. The Euler equation error test in the next section presents the results that

economically interpretable.

4.4 Euler Equation Error Test

The Euler equation error test from Judd (1992) and Judd (1998) examines if the policy function

is consistently approximated over two consecutive periodsby evaluating a unit-free measure that

expresses the one-period optimization error in relation tocurrent consumption. Given the recursive

structure of the Euler equation, current consumption can bewritten as a function of the next period

consumption and other model variables: for the consumptionEuler equation, rearranging (34)

yields

ct =
(

Et

[

βc−1
t+1

(

αezt+1kα−1
t+1 nα−1

t+1 +1−δ
)])−1

(44)

Likewise, for the employment Euler equation, rearranging (41) yields

ct =

(

Et

(

β(1−η)qt

κvct+1

(

−ct+1

n1/γ
t+1

+(1−α)ezt+1

(
kt+1

nt+1

)α
+κu+

κv(1−χ−η ft+1)

(1−η)qt+1

)))−1

(45)

Inserting the involved approximations in the right hand side of the previous two equations

yields the current consumption implied by the approximated, next period consumption and other

approximated model variables

ĉimplied,ConEuler
t =

(

Êt

[

βĉ−1
t+1

(

αeẑt+1k̂α−1
t+1 n̂α−1

t+1 +1−δ
)])−1

(46)

ĉimplied,EmpEuler
t =

(

Êt

(

β(1−η)q̂t

κvĉt+1

(

− ĉt+1

n̂1/γ
t+1

+(1−α)eẑt+1

(

k̂t+1

n̂t+1

)α

+κu+
κv(1−χ−η f̂t+1)

(1−η)q̂t+1

)))−1
(47)

whereˆover the conditional expectation indicates this expectation has been explicitly approximated,

as in Judd (1992), using the Gauss-Hermite quadrature method with the same number of quadrature

points as used in the projection method discussed in section3.2 to compute the coefficientsΘc

andΘv. The superscriptsConEuler andEmpEuler indicate the two implied current consumption are

15As noted by Judd (1992), the conditional expectation in the Euler equation involves an integral that cannot in
general be evaluated explicitly and usually approximated with a finite sum.
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computed using the relationship given by the consumption and employment Euler equation, (44)

and (45), respectively.

The test statistic is essentially the difference between the implied and the actual approximated

current consumption, normalized as the common logarithm ofthe absolute value of the difference

between unity and the ratio of the implied to the actual approximated current consumption

EEEConEuler= log10

∣
∣
∣
∣
∣
1− ĉimplied,ConEuler

t

ĉt

∣
∣
∣
∣
∣

(48)

EEEEmpEuler= log10

∣
∣
∣
∣
∣
1− ĉimplied,EmpEuler

t

ĉt

∣
∣
∣
∣
∣

(49)

The two statistics above are computed at each and every pointon a grid of the three state

variables, i.e., capital, employment and productivity. This test grid shares the same upper and

lower bounds with the grid used by the projection method in section 3.2. However, it contains

simply equispaced points (100 for capital, 100 for employment and 80 for productivity) that are not

necessarily the collocation points. In other words, for theprojection approximation, its accuracy

is evaluated at the set of points other than the set on which the policy function is approximated.

The two sets may nevertheless partially overlapping. Deviations in (48) and (49) from zero are

interpreted by Judd (1992) and many others as the relative optimization error that results from

using a particular approximation.EEE=−1 implies a one dollar error for every ten dollars spent

andEEE=−3 implies a one dollar error for every thousand dollars spent.

[Figure 2 about here.]

Figure2 depicts the consumption and the employment Euler equation error (the upper and the

lower panel of the figure respectively) of the projection approximation in the capital-employment

space. In this and all the other figures throughout the rest ofthis section, productivity is held at

its steady state value (zero) unless otherwise specified. Since the policy function is approximated

at the chosen collocation points, higher accuracy is achieved at and in the vicinity of those points:

in the figure there is a lattice of high accuracy. The points where the edges of the lattice meet

are the collocation points. Aside from this lattice, the projection approximation demonstrates a

high degree of accuracy around the deterministic steady state. The quality of the approximation

decreases, as capital and employment move away from their respective steady state value. In the
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area where capital and employment are both very high/low, the approximation reaches its lowest

accuracy level.

[Figure 3 about here.]

Since the consumption and the employment Euler equation error are both expressed in relation

to the same approximated current consumption,EEEConEuler andEEEEmpEuler as given by (48)

and (49) are directly comparable. Figure3 depicts the difference between the consumption and

the employment Euler equation error, i.e.,EEEConEuler−EEEEmpEulerof the projection approx-

imation. But for a few points the difference is smaller than zero in the entire capital-employment

space. This implies that, with the projection approximation, the consumption Euler equation is in

general better satisfied than the employment Euler equation.

[Figure 4 about here.]

Figure4 plots the consumption and the employment Euler equation error of the third order

perturbation in levels. This (and all the other perturbation) approximation is built around the de-

terministic steady state. As capital and employment deviate from their respective steady state

value, the quality of approximation deteriorates. Like theprojection approximation, the third order

perturbation satisfies the consumption Euler equation better than the employment Euler equation,

as the difference,EEEConEuler−EEEEmpEuler, is negative everywhere in the capital-employment

space, see figure5 below

[Figure 5 about here.]

To evaluate all the approximations and compare their performance on the entire three dimen-

sional grid, the maximum and average Euler equation error are computed as in Judd (1992) and

many others. Table4 reports the results

[Table 4 about here.]

There are three important observations. First, all the approximations satisfy the consumption

Euler equation better than the employment Euler equation, measured by both the max and the

average error. Second, the projection approximation performs better than all the perturbations in
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terms of the average error. This is not surprising, as all theperturbations are local approximations,

built around only one point, i.e., the deterministic steadystate on the grid. The projection method,

however, allows its approximation to anchor on as many points (the collocation points) as desired

on the grid, and therefore has a better global performance. Third, among all the perturbations and

for the consumption Euler equation, higher order (for both level and log specifications) performs

uniformly better than the preceding order. Between level and log specification, the first order

approximation in levels is superior to the first order approximation in logs, in line with Aruoba

et al. (2006). Yet this relationship is reversed at the second order and moving to the third order, the

approximation in levels again outperforms the approximation in logs but only on average.

Turning to the employment Euler equation, only the projection approximation and the third

order perturbation in level are on average accurate. Yet thepositive max errors suggest that none

of the approximations is acceptable in some areas on the grid— at the grid point where the Euler

equation error is positive, the ratio of the implied to the actual current consumption is negative,

meaning there is no consistent consumption plan can be made over two consecutive periods.16 It

is then important to know in which areas the employment Eulerequation error goes above zero

since some areas, as noted by Judd et al. (2010) and Judd et al.(2012), will never be visited in the

equilibrium of the model. The Euler equation error computedin such areas, regardless of its sign

and magnitude, contributes least to the evaluation of an approximation.

[Figure 6 about here.]

Using the third order perturbation as an example, the upper panel of figure6 locates such areas

on the grid by plotting the employment Euler equation error in the capital-productivity space and

holding employment at its upper bound. In the neighborhood of the lower-right corner of the plot

where the productivity lower bound meets the capital upper bound, given employment is at its

upper bound, the error goes beyond 0 and up to 3. Note that, to push the productivity down to its

lower bound requires a sequence of negative productivity shock. Since simulated correlation based

on the approximation suggests that both the capital and the employment are positively correlated

with the shock, these two state variables would deviate fromthe deterministic steady state and

move toward their respective lower, instead of upper boundsin response to such a sequence of

16This is a qualitative inconsistency. To this end, a consistency is quantitative in nature if the corresponding Euler
equation error is negative.
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shock realizations. As the lower panel of figure6 shows, in simulation the model never hits the

lower-right corner of the grid wherez= −0.06 (its lower bound),k = 42 andn = 0.98 (the two

upper bounds).17 The Euler equation error computed in this area appears therefore, not informative

and even misleading as it increases the average error.

In this regard, Den Haan and Marcet’s (1994) test presented in section4.3 complements the

Euler equation error test in evaluating the quality of the approximations of this model. Building

its test statistic on the simulated time series in which the correlation among the state variables

implied by the approximation has been taken into account, Den Haan and Marcet’s (1994) test

implicitly narrows down the test grid to the realized state space associated with the approximation.

As table3 reports, when examined using Den Haan and Marcet’s (1994) test, both the projection

approximation and the third order perturbation in level areaccurate whereas the former is superior

to the latter in the upper tail of the distribution.

[Figure 7 about here.]

Ignoring those redundant areas on the grid, the third order in levels outperforms all the other

perturbations in satisfying the employment Euler equation. For comparison, figure7 plots the−2

contours of the employment Euler equation error in the capital-employment space. For each per-

turbation, the area circled inside its−2 contour is the region where the employment Euler equation

error is smaller than−2. In terms of the size of this−2 accuracy area, the third order in levels

dominates all the others. Moreover, for both level and log specifications, higher order in general

performs better than the preceding order and at first order, linear approximation is−2 accurate on

a larger area than that of log-linearization, which potentially contributes to understanding the result

from Den Haan and Marcet’s (1994) test at this order.

To summarize, the projection provides the most accurate approximation according to the Euler

equation error test. All the approximations satisfy the consumption Euler equation better than the

employment Euler equation. In addition, among all the perturbations, the third order in levels is

the most accurate one, comparable to the projection approximation.

17To produce the simulated grid, all the approximations are simulated in the environment described in section4.2.
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4.5 Simulated Moments Comparison

This section presents the moments computed using the simulated series based on different ap-

proximations. All the approximations are simulated in the same environment as that described in

section4.1. For all the level approximations (the projection and the perturbation in levels at all

three order), their simulated series are transformed by thenatural logarithm before applying the

Hodrick-Prescott filter.

[Table 5 about here.]

Table5 reports the standard deviation of the selected model variables relative to that of out-

put or labor productivity. Taking those generated by simulating the projection approximation as

the benchmark since the projection approximation outperforms all the perturbations in terms of

accuracy, all the relative volatilities generated by perturbations are very close to the benchmark,

and to each other. The volatility of consumption, capital, employment and labor productivity in

relation to that of output are even identical across all the approximations. The linear approxima-

tion tends to slightly overstate the relative volatility ofvacancy and labor market tightness. For

log-linearization, though it appears the least accurate approximation in terms of satisfying the em-

ployment Euler equation, the relative volatilities it generate are still very close to the benchmark.

[Table 6 about here.]

Moving to the (auto)correlation, as table6 shows, the results from all the approximations are

also very similar. This similarity among the simulated moments originates from the similarity

among all the approximations in the neighborhood of the deterministic steady state and most fre-

quently, the realizations of the model fall in that region.

[Figure 8 about here.]

Figure8 plots, for example, the approximated policy function of thevacancy and the labor

market tightness from the (log)linear approximation, the third order perturbation in levels and the

projection on the employment grid, holding the other two state variables (capital and productivity)

at their respective steady state value. In addition, the histogram of employment has been appended
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to the plot in order to show the distribution of the employment realizations.18 The approximated

policy function implies, in the vicinity of the steady stateemployment, that is, between 0.92 and

0.96, the corresponding values of the vacancy and the labor market tightness indicated by the four

approximations are very similar, and this vicinity, as the histogram shows, happens to be the region

in which most of the employment realizations fall. The simulated series and therefore the simulated

moments, are accordingly similar across the four approximations.

5 Conclusion

In this paper I have solved a real business cycle model with labor market search frictions using

the projection and the perturbation methods under the conventional quarterly calibration. I then

implement Den Haan and Marcet’s (1994) test and the Euler equation error test from Judd (1992)

and Judd (1998) to evaluate the quality of all the approximated solutions. The results from the

two tests suggest that the approximation provided by the projection method is the most accurate

among all the approximations, and the third order perturbation in levels also achieves a degree of

accuracy comparable to that of the projection approximation. Among all the perturbations and for

both log and level specifications, the results from the Eulerequation error test show that, higher

order performs on average better than the preceding order.

By comparing the respective test statistic for the consumption and the employment Euler equa-

tion, I find that across all the approximations, the consumption Euler equation is better satisfied

than the employment Euler equation. Moreover, the results from Den Haan and Marcet’s (1994)

test suggest that the first order perturbation in levels is preferred to the first order perturbation in

logs in satisfying the employment Euler equation. In satisfying the consumption Euler equation,

the results from the Euler equation error test also indicates that the level specification performs

better than the log specification at first order.

To analyze the implications of the difference in accuracy among all the approximations, I com-

pare the simulated moments based on different approximations and find that all of them are similar

in value. Even for the approximations with a relatively low degree of accuracy such as the first

order perturbation in levels and in logs, the simulated moments produced by them are very close

18To produce the histogram, all the approximations are simulated in the environment described in section4.2.
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to those produced by the projection approximation. To explain this similarity, I simulate all the

approximations and present the resulting histogram of their realizations and find that, for all the

approximations, most of their realizations fall in the neighborhood of the deterministic steady state

of the model and in this neighborhood, all the approximations behave similarly.
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A Appendices

A.1 Taylor Expansion

TheM-th order Taylor approximation of (21) at the deterministic steady state (25) is

Corollary A.1. An M-th order Taylor Approximation of (21) is written as

yt =
M

∑
j=0

1
j!

[
M− j

∑
i=0

1
i!

yzj σi σi

]

(zt −z)⊗[ j ](A-1)

Proof. From Vetter (1973), a multidimensional Taylor expansion isgiven by

W
(p×1)

( B
(s×1)

) =W(B̄)+
M

∑
n=1

1
n!

D
n
BT nW(B̄)(B− B̄)⊗[n]

+RM+1(B̄,B)(A-2)

whereRM+1(B̄,B) =
1

M!

∫ B

ξ=B̄
D

M+1
BT M+1W(ξ)

(

Is⊗ (B−ξ)⊗[M]
)

dξ(A-3)

Differentiating (21) M times, a Taylor approximation at the deterministic steady statez is

yt =
1
0!

(
1
0!

y+
1
1!

yσσ+
1
2!

yσ2σ2+ . . .+
1

M!
yσM σM

)

+
1
1!

(
1
0!

yz+
1
1!

yzσσ+
1
2!

yzσ2σ2+ . . .+
1

(M−1)!
yzσM−1σM−1

)

(zt −z)

+
1
2!

(
1
0!

yz2 +
1
1!

yz2σσ+
1
2!

yz2σ2σ2+ . . .+
1

(M−2)!
yz2σM−2σM−2

)

(zt −z)⊗[2]

...

+
1

M!
1
0!

yzM (zt −z)⊗[M]

Writing the foregoing more compactly yields (A-1).

A.2 Projection Appendix

Starting with the capital grid, for any element of the set,ki
t ∈ [kmin,kmax] with i being a positive

integer for indexing purpose, the linear transformation

ϕ(ki
t) =

2(ki
t −kmin)

kmax−kmin
−1, i = 1,2, ...(A-4)

ensures thatϕ(ki
t) is bounded to the set[−1,1]. I choosenk elements from the set, collected in

the vectorkt =
[
k1

t k2
t . . . knk

t
]′

, such that after applying the linear transformation (A-4) to kt ,

the elements of the resulting vectorϕ(kt) =
[
ϕ(k1

t ) ϕ(k2
t ) . . . ϕ(knk

t )
]′

are thenk roots of the

following nkth Chebyshev polynomial basis

T (ϕ(kt)) =
[
T0 T1(ϕ(kt)) T2(ϕ(kt)) . . . Tnk (ϕ(kt))

]
(A-5)
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whereTi(·) ≡ cos(i arccos(·)) is the ith Chebyshev polynomial withT0 = 1 andT (ϕ(kt)) is of

dimension(nk+1)× (nk+1).

Analogous to my choice of elements from the capital set, I choosenn andnz elements from

these two sets,nt =
[
n1

t n2
t . . . nnn

t
]′

andz=
[
z1
t z2

t . . . znz
t
]′

, that after being transformed by

ϕ(·), are thenn andnz roots of the followingnnth andnzth Chebyshev polynomial basis respectively

T (ϕ(nt)) =
[
T0 T1(ϕ(nt)) T2(ϕ(nt)) . . . Tnn (ϕ(nt))

]
(A-6)

T (ϕ(zt)) =
[
T0 T1(ϕ(zt)) T2(ϕ(zt)) . . . Tnz (ϕ(zt))

]
(A-7)

whereT (ϕ(nt)) andT (ϕ(zt)) are of dimension(nn+1)× (nn+1) and(nz+1)× (nz+1) respec-

tively.

As in Judd (1992), Aruoba et al. (2006) and Caldara et al. (2012), the multidimensional basis

of the approximated policy function is the Kronecker product of the above three one-dimensional

basis

X(kt ,nt,zt) = T(ϕ(kt))⊗T(ϕ(nt))⊗T(ϕ(zt))(A-8)

with dimension(ng×ng)whereng= (nk+1)×(nn+1)×(nz+1) is the number of all triplets of the

collocation points along three dimensions, i.e., the number of grid points in the three-dimensional

state space[kmin,kmax]× [nmin,nmax]× [zmin,zmax]. With this multidimensional basis, the approxi-

mated policy function of consumption and vacancy writes

ĉt = X(kt,nt,zt)Θc = Pc(kt ,nt,zt ;Θc)(A-9)

v̂t = X(kt,nt,zt)Θv = Pv(kt ,nt,zt ;Θv)(A-10)

whereˆ indicates these are approximated policy functions,andΘc andΘv are two vectors of coef-

ficients to be determined. Both ˆct andv̂t are of dimension(ng×1).

I solve for the unknown coefficientsΘc andΘv from the two Euler equations (12) and (15)

using den Haan and Marcet’s (1990) functional iteration: ateach grid pointi

1. usej-th iteration of the coefficients,Θ j
c andΘ j

v, to compute

ni
t+1 = (1−χ)ni

t +m0Pv
(
ki

t ,n
i
t,z

i
t ;Θ j

v

)1−η
(1−ni

t)
η, i = 1,2, ...,ng(A-11)

ki
t+1 = (1−δ)ki

t +ezi
t (ki

t)
α(ni

t)
1−α −Pc

(
ki

t ,n
i
t,z

i
t ;Θ j

c

)
(A-12)

−κvPc(k
i
t ,n

i
t ,z

i
t;Θ j

v)−m0κu(1−ni
t)

ci
t+1 = Pc

(
ki

t+1,n
i
t+1,ρzi

t + εt ;Θ j
c

)
(A-13)
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vi
t+1 = Pv

(
ki

t+1,n
i
t+1,ρzi

t + εt ;Θ j
v

)
(A-14)

2. given (A-11) - (A-14) and approximating the conditional expectation with the Gauss-Hermite

quadrature, the Euler equation for consumption (12) writes
(
ĉi

t

)−1
= β

m

∑
r=1

[

Pc

(

ki
t+1,n

i
t+1,ρzi

t +
√

2σζr ;Θ j
c

)−1
(A-15)

×
(

1−δ+αexp
(

ρzi
t +

√
2σζr

)

(ki
t+1)

α−1(ni
t+1)

1−α
) ωr√

π

]

whereζr andωr are Gauss-Hermite quadrature points and weights. From the foregoing solve

for ĉi
t . Analogously, the Euler equation for employment (15) writes

(
v̂i

t

)η
=
(1−η)m0

κv
(1−ni

t)
η (ĉi

t

)
β(A-16)

×
m

∑
r=1

[

Pc

(

ki
t+1,n

i
t+1,ρzi

t +
√

2σζr ;Θ j
c

)−1

×
(

−
(
ni

t+1

)−1/γ
Pc

(

ki
t+1,n

i
t+1,ρzi

t +
√

2σζr ;Θ j
c

)

+(1−α)exp
(

ρzi
t +

√
2σζr

)(
ki

t+1

)α (
ni

t+1

)−α
+κu

+
κv(1−χ)Pv

(

ki
t+1,n

i
t+1,ρzi

t +
√

2σζr ;Θ j
v

)η

(1−η)m0
(
1−ni

t+1

)η

− ηκv

1−η

Pv

(

ki
t+1,n

i
t+1,ρzi

t +
√

2σζr ;Θ j
v

)

1−ni
t+1

)
ωr√

π

]

from the foregoing solve for ˆvi
t

3. repeat step1 - 2 for all ng grid points, get an estimation of the new coefficients with the

following regression

Θ̂ j+1 =
[

Θ j+1
c Θ j+1

v

]

=
[
X(kt,nt,zt)

′X(kt ,nt,zt)
]−1

X(kt ,nt,zt)
′ [ĉt v̂t

]
(A-17)

whereX(kt,nt,zt) is the multidimensional basis defined by (A-8). Then obtain the( j +1)-th

iteration of the coefficients with the following updating rule

Θ j+1 = ΛΘ̂ j+1+(1−Λ)Θ j(A-18)

whereΛ ∈ (0,1] is a parameter for stabilizing the iteration.

4. repeat step1-3 till ‖Θ j+1−Θ j‖ is smaller than a desired level of tolerance.

The choice of parameters for the iteration is summarized in Table7.
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[Table 7 about here.]
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Table 1:Quarterly Calibration

symbol value symbol value

γ -1.25 χ 0.036
α 0.36 η 0.5
δ 0.026 θss 0.72
β 0.99 nss 0.94
ρ 0.95 κv 0.0875
σz 0.0073 κu 0.1451

Table 2:Second moments from Data and Projection Solution

Statistic Data Model Statistic Data Model

σc/σy 0.40 0.34 σu/σy 6.11 3.37

σk/σy 0.22 0.29 σv/σy 7.31 7.31

σn/σy 0.54 0.22 σθ/σp 19.10 10.32

σy 1.87 1.05 σp/σy 0.68 0.84

ρ(u,v) -0.894 -0.1957

Table 3:DHM Accuracy Test,T = 500

JT for Consumption Euler JT for Employment Euler

< 5% > 95% < 5% > 95%

Linear 4.5 6.2 4.2 12.0
Log-linear 5.6 6.2 2.0 40.8
Perturbation 2 4.5 5.5 4.5 9.5
Perturbation 2 in Log 6.4 6.0 5.7 11.0
Perturbation 3 4.5 5.6 4.6 10.1
Perturbation 3 in Log 6.4 6.0 6.5 11.0
Projection 5.4 5.2 5.4 5.3
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Table 4:Euler Equation Error Test

Consumption Euler Employment Euler

max. error avg. error max. error avg. error

Linear -3.25 -3.98 2.22 -0.47
Log-linear -3.07 -3.91 0.45 -0.64
Perturbation 2 -3.63 -4.86 4.17 -0.93
Perturbation 2 in Log -4.11 -4.98 4.24 -0.78
Perturbation 3 -3.93 -5.27 3.30 -1.14
Perturbation 3 in Log -4.12 -5.25 3.25 -0.68
Projection -2.95 -5.50 3.70 -1.79

Table 5:Relative Standard Deviation from Data and Model

Statistic Data Model I Method Statistic Data Model I Method

σc/σy 0.40 0.34 (PJ) σu/σy 6.11 3.37 (PJ)
0.34 (P3) 3.39 (P3)
0.34 (P2) 3.40 (P2)
0.34 (LN) 3.42 (LN)
0.34 (LLN) 3.38 (LLN)

σk/σy 0.22 0.29 (PJ) σv/σy 7.31 7.31 (PJ)
0.29 (P3) 7.31 (P3)
0.29 (P2) 7.34 (P2)
0.29 (LN) 7.40 (LN)
0.29 (LLN) 7.30 (LLN)

σn/σy 0.54 0.22 (PJ) σθ/σp 19.10 10.32 (PJ)
0.22 (P3) 10.32 (P3)
0.22 (P2) 10.25 (P2)
0.22 (LN) 10.72 (LN)
0.22 (LLN) 10.31 (LLN)

σy 1.87 1.05 (PJ) σp/σy 0.68 0.84 (PJ)
1.05 (P3) 0.84 (P3)
1.05 (P2) 0.84 (P2)
1.05 (LN) 0.84 (LN)
1.05 (LLN) 0.84 (LLN)

∗ PJ:projection, P3: 3rd order perturbation, P2: 2nd order perturbation, LN: linearization, LLN: log-
linearization
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Table 6:Correlation and Autocorrelation from Data and Model

Statistic Data Model I Method Statistic Data Model I Method

ρ(u,v) -0.8949 -0.1957 (PJ) ρ(u,θ) -0.971 -0.554 (PJ)
-0.2000 (P3) -0.553 (P3)
-0.1975 (P2) -0.550 (P2)
-0.1952 (LN) -0.544 (LN)
-0.1970 (LLN) -0.556 (LLN)

ρ(u, p) -0.408 -0.677 (PJ) ρ(v,θ) 0.975 0.925 (PJ)
-0.677 (P3) 0.924 (P3)
-0.676 (P2) 0.927 (P2)
-0.674 (LN) 0.922 (LN)
-0.677 (LLN) 0.924 (LLN)

ρ(v, p) 0.364 0.813 (PJ) ρ(θ, p) 0.396 0.953 (PJ)
0.813 (P3) 0.953 (P3)
0.814 (P2) 0.953 (P2)
0.812 (LN) 0.946 (LN)
0.815 (LLN) 0.955 (LLN)

ρ(ut ,ut−1) 0.936 0.795 (PJ) ρ(vt ,vt−1) 0.940 0.329 (PJ)
0.795 (P3) 0.329 (P3)
0.795 (P2) 0.331 (P2)
0.796 (LN) 0.328 (LN)
0.796 (LLN) 0.329 (LLN)

ρ(θt ,θt−1) 0.941 0.597 (PJ) ρ(pt , pt−1) 0.878 0.660 (PJ)
0.600 (P3) 0.660 (P3)
0.595 (P2) 0.660 (P2)
0.597 (LN) 0.660 (LN)
0.599 (LLN) 0.660 (LLN)

∗ PJ:projection, P3: 3rd order perturbation, P2: 2nd order perturbation, LN: linearization, LLN: log-
linearization

Table 7:Parameters of the Iteration

symbol value source

Number of collocation points for capital nk 11 Aruoba et al. (2006)
Number of collocation points for employmentnn 11
Number of collocation points for productivity nz 9 Aruoba et al. (2006)
Number of Gauss-Hermite points m 9 Judd (1992)
Tolerance for convergence 1e−14
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Figure 1:Simulated Density
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Figure 2:EEE of Projection,z= 0
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Figure 3:Difference in EEE,z= 0
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Figure 4:EEE of Projection,z= 0
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Figure 5:Difference in EEE,z= 0
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Figure 6:Employment EEE of Perturbation 3 (n = nmax) and Simulated Grid
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Figure 7:Employment EEE of Perturbations,−2 Contour
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Figure 8:Approx. Policy Rule and Histogram
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