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Abstract

| compare the performance of solution methods in solvinguadsrd real business cycle model
with labor market search frictions. Under the conventiaadibration, the model is solved by the
projection method using the Chebyshev polynomials as ggspand the perturbation methods up
to third order in both levels and logs. Evaluated by two aacytests, the projection approximation
achieves the highest degree of accuracy, closely followetidthird order perturbation in levels.
Although different in accuracy, all the approximated siou$ produce simulated moments similar

in value.
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1 Introduction

Initiated by Merz (1995) and Andofatto (1996), many studiebusiness cycles choose to incor-
porate the search frictions introduced by Pissarides (1888 Mortensen and Pissarides (1994)
in their characterization of the labor market. While vasauethods are employed to solve this
type of business cycle models with labor market searchidnst little effort has been made to
compare the performance of these solution methods. | pradeaseline model of this type, and
solve it using projection and perturbation methods undectnventional calibration. Whereas the
approximated solutions provided by these two classes diadstare different in accuracy, | find
the simulated moments based on them are very similar in value

The projection methods introduced by Judd (1992) have beewrsto be able to produce a
highly accurate approximation to the true policy functidradarge class of DSGE models, and
have therefore often been used as the reference solutiomoéial that has no known closed form
solution, see Aruoba et al. (2006) and Caldara et al. (20d2gtample. The projection | im-
plement approximates the true solution of the model witmeadr combination of the Chebyshev
polynomials, and pins down the coefficients of the linear bmration by minimizing a residual
function derived from the Euler equations of the model atribdes of the Chebyshev polyno-
mials. The perturbation method introduced by Gaspar and (1@97) approximates the policy
function with a Taylor expansion, and solves for the coedfits of the expansion from the equa-
tions resulting from successive differentiation of the iBlgium conditions of the model. With
the perturbation method | approximate the policy rule uphiodtorder for both the level and
log specifications of the model. Then | implement Den HaanMadcet’s (1994) accuracy test
and the Euler equation error test from Judd (1992) and Ju@@B{lto evaluate the quality of the
approximations produced by the two methods.

Of particular interest is that the equilibrium of the modetharacterized by two intertemporal
Euler equations. Besides the standard consumption Eulatieq, employment is endogenously
determined and also characterized by an intertemporaf Eqleation. For each approximation and
measured by the statistics of the two accuracy tests, | fiadthle consumption Euler equation is
always better satisfied than the employment Euler equétioa projection approximation achieves

the highest degree of accuracy in satisfying both of the twieiEequations, and the third order



perturbation in levels is the second-best performing agpration. In particular, Den Haan and
Marcet's (1994) test suggests that the first order pertimban levels (the linear approximation)
is superior to the first order perturbation in logs (log-aneation) in satisfying the employment
Euler equation. For the consumption Euler equation, therfequation error test suggests that the
linear approximation performs better than the log-lineation, as noted by Aruoba et al. (2006)
in their comparison of solution methods for a business cyubelel where labor supply is also
endogenously determined but characterized by an intrateahguler equation.

As above, the two accuracy tests complement each other inagvey the approximations
of this model. In practice, the Euler equation error testfteroconducted on a state variable
grid whose size is pre-specified merely with the guidancénefdistributional properties of the
state variables, without taking into account the corretammong the state variables implied by
the corresponding approximation itself. As noted by Juddl.ef2010) and Judd et al. (2012),
some regions on such a grid will not be visited in the equiilitor of the modet Indeed, in this
model, such redundant regions exist and the Euler equattorsecomputed in those regions are
uninformative in evaluating the approximations. Den Haad Blarcet's (1994) test, however,
builds up its test statistic using the simulated time sariaghich the correlation among the state
variables as the restraint on the realizations has beencexfoConsequently, this test examines the
accuracy of an approximation essentially in its associsti&i@ space where it ought to be accurate.
One drawback of Den Haan and Marcet’s (1994) test is thatebglts do not have an economic
interpretation, but the results from the Euler equationreiest do.

Although different in accuracy, all the approximationskastmodel produce similar simulated
moments. This similarity follows from the fact that in thegigorhood of the deterministic steady
state of the model, all the approximations behave similangl most of their realizations fall in
that neighborhood in simulation. In recent literature y&&ty-Nadeau and Zhang (2013) compare
the performance of a spline approximation with the perttioban logs up to second order in solv-
ing Hagedorn and Manovskii's (2008) model and find that timeutated moments produced by
log-linearization is significantly different from thoserggated by the accurate spline approxima-

tion. Aside from that capital is not included, Hagedorn anainigvskii's (2008) model assumes a

Linstead of focusing on computing the Euler equation erhey thake use of this observation to develop the projec-
tion methods on the realized (in simulation) state spacg &l the purpose of mitigating the curse of dimensionality
when solving models with a large number of state variables.



CES type of matching function, forcing the realization af tracancy-filling rate to fall in between
zero and one (see den Haan et al. (2000)). The model in thes palfpws Merz (1995), Andofatto
(1996), Pissarides (2000), Shimer (2005), Pissarides9)2&@d many others in assuming a stan-
dard Cobb-Douglas matching function, and interprets tlteawey-filling rate that exceeds unity
as, following Den Haan and De Wind (2012), being due to firmng hiore than one workers for a
posted vacancy.

The rest of the paper is organized as follows. The real basiogcle model with labor market
search is specified in secti@n In section3, | present the perturbation and projection approxima-
tions to the model with the calibration. The numerical resahd implications of the approxima-

tions are analyzed in sectid@hn Section5 concludes.

2 The Stochastic Growth Model with Labor Market Search

In this section, | lay out the model and characterize thelggwim. The model embeds a Mortensen-
Pissarides labor market search framework into an otherstesedard real business cycle model,

and is parameterized close to the way described in Merz (1&8bAndofatto (1996).

2.1 The model

The economy is populated by infinitely lived, identical helislds whose preferences are repre-
sented by the following utility function
1-1)y

1) U<Ct7nt>:|n0t—;t_71/y

wherec; is consumptionn the fraction of employed family members apdhe negative of the
Frisch elasticity of labor supply. The model assumes only states for a family member, em-
ployed or unemployed. The fraction of the unemployed famigmbers therefore writes
(2) u=1—n

Under appropriate assumptions on the matching functia eitternality generated by labor

market search activities can be internalized and therdftwenodel can be solved as a social

planner’'s problem. The social planer evaluates the socdfiave represented by the following



value function

3) V (ke nt,z) = rcrtlth{U (Gt ) + BEtV(kt+l,r\t+l,Zt+l)}
wheref3 € (0,1) is the discount factork the capital stocky; the vacancy and; a stochastic

productivity process of the form

4) Z=pz-1+¢&;, & ~N(0,07)
wherep € (0,1) is the persistence parameter of the processatiet productivity shock, normally
and identically distributed with zero mean and standardeadiew o,. The maximization is subject

to the following constraints

() kiv1 = (1—9O)ki +F(z,nt, k) — & — Ky —Ky(1—nt)

(6) N1 = (1=X)ne+M((1—n), )

where b) is the aggregate resource constraint With (0, 1) the depreciation rate of capital stock,

Ky the vacancy posting cost argd the cost of job search, both assumed to be congtat, n;, ki)

is the production function and assumed to take the Cobb-Redgrm

) F(z,n. k) = ki
wherea € (0,1) is the capital share. The capital stock in the next periocefoee is the sum of
current capital after depreciation, and the current outptibf consumption and two types of costs
incurred by search and matching activities in labor markets

The dynamic of aggregate employment is describeddpwvith x € (0,1) the exogenous job
separation rate, assumed to be constantf{d — n;), vt ) the matching function. The employment
in the next period therefore is the sum of current employrtfetithas not been destroyed, and the
new employment generated by the matching function. Foliguilerz (1995), Andofatto (1996),
Pissarides (2000), Shimer (2005), Pissarides (2009) amy mthers, the matching function is
assumed Cobb-Douglas
(8) M((1— ), ) = mov (1 —1y)"
wherenmyg is a constant scaling factor amde (0,1) the elasticity of the matching function with
respect to unemployment.

As is usual in labor market search and matching literatheelgbor market tightness is defined



as the ratio of the vacancy to the unemployment

\V/ \Y/
(9) ) L.

B
The job finding rate is a function of the labor market tight)eseasuring the rate at which

unemployed workers find jobs, and is defined as the ratio gbthenatch to the unemployment
M M

10 fi = =—

(10) ==y

The vacancy filling rate is also a function of the labor matigdttness, measuring the rate at

which vacant jobs become filled, and is defined as the ratibeojab match to the vacancy
(11) =—

Both the job finding and vacancy filling rate are probab#ifiand should lie between zero
and one. The vacancy filling rate, however, can potentiadeed unity in simulation when the
matching function takes the Cobb-Douglas form (see den Haah (2000, p. 485)). To avoid
introducing nonsmoothness into the policy function sintehiat case the perturbation methods
cannot be applied, | do not restrigtto be less than one. The realizationgpthat exceeds unity
is interpreted as that firms hire more than one worker on eastegd vacancy (see Den Haan and
De Wind (2012, p. 1480)).

2.2 Characterization

The equilibrium of the economy is characterized by, aparnfthe stochastic productivity process
(4), the resource constrainb)(and aggregate employment dynaméj, (the Euler equation for
consumption equalizing the expected present-discounii@g ualue of postponing consumption

of one period to its utility value today

(12) Uct = BE: {Uc,t+l (1 -0+ Fk,t+1)]
where
(13) Uos = +
=g
(14) Fiee = ek~

and the Euler equation for employment equalizing the maidass in welfare due to vacancy cre-

ation, in terms of utility, to its expected present-discaaihmarginal contribution to social welfare

K

U 1 K
(15) —VUCJ = BEI |:UC,t+1 ( n,t+ + Fn,t+1 +Ky+ v (1 —X + Mn7t+1) ):|
Myt Ucti1 Myt+1




where

(16) Une = —ny Y

(17) Fot = (1—a)e*kin®
and

(18) Myt = (1—n)mov; " (1—rx)"
(19) Mnt = —nmovp (1 —n)" 2

This marginal contribution, net of the disutility from waqris the sum of the marginal labor pro-
ductivity, the saved job search cost and the its potentiaticoation, i.e., in case the job match
is not destroyedMy 1 corrects the continuation as the (un)employment stock maady been

changed by the vacancy creation.

3 Solution Methods

The model described in secti@hdoes not have a known closed form solution, and needs to be
solved with numerical methods. | solve the model using pkdtion and a particular type of
projection method, that is, the spectral method with Chiebygolynomials.

The Perturbation method as described in Gaspar and Judd)(1®@ld and Guu (1997), Judd
(1998, ch. 13), Jin and Judd (2002) , Schmitt-Grohé anddJ{2004) and many others, assumes
the policy function exists, then successively differeetsahe equilibrium conditions and solve the
resulting system of equations evaluated at typically therd@nistic steady state to recover the
coefficients of a Taylor expansion of a desired order of thypdunction. Under appropriate
smoothness assumptions, Taylor's theorem guaranteespheston converges to the true policy
function as the order of expansion approaches infinity.

The spectral method specifies the approximated policy fomcis a linear combination of
Chebyshev polynomial basis, as noted in Judd (1992, p. #8p@sing smoothness conditions on
the approximated policy function, and then solves for thefft@ents of the linear combination
by minimizing the residual function defined by the equilini conditions of the model at the
chosen collocation points, i.e., the zeros of the Chebypbénomial basis. As noted in Aruoba
et al. (2006, p. 2488), such a minimization process delitteesbest trade-off between accuracy

and the ability of handling a large number of basis functi@mgl by the Chebyshev interpolation



theorem, the approximation error becomes arbitrarily amkhe number of collocation points

used in approximation approaches infinity.

3.1 Perturbation

The equilibrium conditions of the model, that i4){6) and the two Euler equation$?) and (L5)

can be cast into the following problem

(20) 0= Et[f(Yer1, ¥, Yt-1,€)]
where theny-dimensional vector-valued functiofi: R x R x R x R"™ — R is assumed
CM with respect to all its arguments, wheké is the order of approximation to be introduced
subsequentlyy; € R" is the vector ofny endogenous and exogenous variables; ar@R" the
vector ofne exogenous shock?swhereny andne are positive integerqy, ne € N). The elements
of & are assumed i.i.d. with [&;] = 0 andE [et@)[m]] finite Ym< M .3

Following standard practice in DSGE perturbation, | introel an auxiliary parameter € R
to scale the risk in the mod&IThe stochastic model under study B0J corresponds to = 1 and

o = 0 represents the deterministic version of the model. Indggolutions witho

(21) Yt =Y(0,%), y:RxR™—RY
with the state vectar given by
(22) z = {ygl} c R"*! wheren, = ny+ne

To enable a standard DSGE perturbation, | assume the vectotidny exists and i€V with

respect to all its arguments. Time invariance of the polisyction and scaling risk imply

~ o A
(23) Yer1 =Y(0,%11), 11 Ofti1

The notation)y andy, is adopted to track the source (throughor y;,1) of derivatives of the

e R §:RxR™ 5 R"Y

policy function. This is necessary as (i) the1 argument ofy7s itself a function ofy through its

dependance oy, and (ii) o scales. 1 in theZ .1 argument ofy; but notg; in thez argument of

2Nonlinearity or serial correlation in exogenous processesbe captured by including the processes themselves
in the vectony; and including functions irf that specify the nonlinearity or correlation pattern.

3The notationg; /™ represents Kronecker powers;®[M is the m'th fold Kronecker product of; with itself:
E§ Q& - WE.
H—/

m times

4This formulation follows Adjemian et al.’s (2011) Dynarenderson et al.’s (2006) PerturbationAIM and Michel
(2011). Jin and Judd’s (2002) or Schmitt-Grohé and Urik@004) model classes can be rearranged t@}. (

5Only in this section, i.e., sectid 1, z is used to denote the state vector of the policy functionnywaere else,
z denotes the productivity process.



y. This follows from the conditional expectations 20f: &; realizes at time and is in the time
t information set—hence, it is not scaled byhoweverg; 1 has not yet been realized and is the
source of risk—hence, it is scaled by?

Inserting the policy functions foy, andy; . 1—equations21) and @3)—into (20) yields

(24) 0=F {f (v<o, y“”z‘)D ,y(o,zo,zt)] —F(0,2)

O€t4+1
a function with arguments andz. ’ | will construct a Taylor series approximation of the sabuti

(21) around a deterministic steady state defined as follows

Definition 3.1. Deterministic Steady State

Lety € R™ be a vector that solves the policy functi@i) withe = 0ando =0

(25) y=Y(0,2), wherez= m

In practice, the deterministic steady state value is sdir@d the deterministic version o24),
i.e., from 0= f (v,y,2).

With f andy both being vector-valued functions that take vectors asraemts, their partial
derivatives form hypercubes. | use the method of Lan and M&gide (2013) that differenti-
ates conformably with the Kronecker product, allowing menaintain standard linear algebraic

structures to derive my results.

Definition 3.2. Matrix Derivatives
Let A(B) : R*! — RP*4 pe a matrix-valued function that maps ax 4 vector B into an px g

matrix A(B), the derivative structure of #8) with respect to B is defined as

(26) Ag = Tgr {A} = [a%l &] oA

where b denotes i'th row of vector B, indicates transposition; n’th derivatives are
n 9 o 12

27) Pen = Dfyr oA} = [E m] A

6See also Anderson et al. (2006) and Michel (2011) for sindiiscussions.
’Note thatg; 1 is not an argument d¥ as it is the variable of integration inside the expectatidses,

F(O-azt) = /Q f (y (Ga [y(O’,Zt)O'&_'_l}) 7y(0-azt)7zt) (P(Et+1) dety1

whereQ is the support ang the p.d.f. ofe;1. Thus, whero = 0, &1 is no longer an argument dfand the integral
(and hence the expectations operator) is superfluousjiyigtide deterministic version of the model.



| assume the policy function2l), admits a Taylor series approximation upMch order at a
deterministic steady state which | writéfas

A I s R \&lil
(28) YthZ)ﬁ ﬁyzioio- (Zt_z)

wherey,j; € RY*M is the partial derivative of the vector functignvith respect to the state vector

z | times and the perturbation paramefartimes evaluated at the deterministic steady state using
the notation of definitior3.2 That is

i lil (a0 \°"
(29)  Yio = 7Y, {y(o,zo}z([ﬁ_l - ] ®(%) )®y<o,zt>

7)ol
ol /9
= <|:021(?t—1 aznzt—l:| <%)>®y(0,zt)
M—j 1

whereT indicates transposition and the second line follows &sa scalar. The tern{szizo TYzigi O'i]

in (28) collect all the coefficients associated with {jix fold Kronecker product of the state vector,
(z —2). Higher orders ob correct the Taylor series coefficients for risk by succesdgiopening
the coefficients to higher moments in the distribution ofifetshocks. At third order and for

o = 1, the Taylor approximatior2@) writes

(30) w~y+ %yoz + %yos + {yﬁ %YGZZ] (z—-2)+ %yzz (z-2)°P + %yzs (2—2)"% =y

where only terms with nonzero coefficients have been incuated ™ highlights that30) is an
approximation of the policy functior2(). To solve for the coefficients of the third order expansion
(30), I take the collection of derivatives df in (24) from the previous order (for the first order, |

start with f itself) and
1. differentiate the derivatives dffrom the previous order with respect to all their arguments
2. evaluate the partial derivatives bfand ofy at the deterministic steady state
3. apply the expectations operator and evaluate using ¥le@ gnoments
4. set the resulting expression to zero and solve for theawirpartial derivatives oy.

The resulting equation fof, at first order takes the form of a matrix quadraficAll the other

8See appendiA.1 for a derivation of the Taylor series approximation.
9A similar interpretation can be found in Judd and Mertend @dor univariate expansions and in Lan and Meyer-
Gohde (2013) for expansions in infinite sequences of inmowat
10see, Uhlig (1999) for example.



unknown coefficients, as noted by Judd (1998, ch. 13), JinJadd (2002), Schmitt-Grohé and
Uribe (2004) and others, are solutions to linear equatiakmg the results from lower orders as

givenl!

3.2 Projection

The spectral method seeks an approximation of the policgtiom on the grid of state variables.
The lower and upper bounds of this grid are chosen such thatpted in Aruoba et al. (2006,
p. 2486) and Caldara et al. (2012, p. 196), they will bind amith an extremely low probability.
The deterministic steady state as given in definiBdhof the state variables is also included in the
grid as it is a point that can be determined before approxanasee Judd (1992, p. 429). Given
there are three state variables in the model, i.e., capitabloyment and productivity, the grid of
approximation is a cubékmin, kmax X [Nmin, Nmax X [Zmin, Zmax Where the subscriptgin and max
indicate the lower and upper bounds of the state variabisdttach to. Along each of the three
dimensions, the grid points are chosen to be, up to a linaastormation, the roots of Chebyshev
polynomials that lie in the interval betweerl and 1.

The two policy functions of consumption and vacancy are fatictions of state variables and
are approximated with the following linear combinationlo¢ {Chebyshev basis
(31) G = X(k,Nt, %)Oc
(32) Ve = X(ke;nt, )Gy
where " indicates these are approximatio@s. and ®©, are two vectors of coefficients to be de-
termined. Bothc andV; are of dimensionng x 1) with ng the number of grid points. The
multidimensional Chebyshev polynomial ba¥igk,n;,z) on which the approximation of both
consumption and vacancy are built is the Kronecker tensmhyut of three Chevyshev polynomial
basis of capital, employment and productivity respecyiv€he details of constructing(k, n, z)
are relegated to the appendix.

The two Euler equationd @) and (L5) that characterize the policy function of consumption and

LAl these linear equations can be cast into a generalizegeStgr form, see Lan and Meyer-Gohde (2014).
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vacancy can be written as the following functional
(33)

Uct — BE [Uc,t+1 (1 — O+ Fk,t+1)}
A (G, ) = = o

0
Ko BBy Ugren (SR 4 Ry + Ko+ 8 (1—X+M - H
My JCi t [Uct+1 nt+1+Kut g 0 X+ Mnti1

Ucti1

Inserting the approximated policy functior®lf and @2) in the previous functional, noting
thatk;, 1 andn;,1 can be calculated using the aggregate resource constaemnmd the dynamic
of aggregate employmeng)(given the state variable grid and approximated policy fiomg and
approximating the expectation with, following Judd (199&gauss-Hermite quadrature method
yields the residual function. The unknown coefficients & #pproximated policy functior®.
and ©,, are solved from the residual function using den Haan andcétar (1990) functional
iteration, taken the third order perturbation in levels fas initial guess. See the appendix for

details.

3.3 Calibration

The model is quarterly calibrated. The parameter valuesmsmarized in Tabld, are taken from
Merz (1995), Petrongolo and Pissarides (2001), ShimerJ&0d Pissarides (2009)

[Table 1 about here.]

In particular, the steady state values of the labor margétriess and aggregate employmégt,
and ngs respectively, are taken from Shimer (2005) and Pissarigd@89). The vacancy posting
cost,Ky, is chosen, using the projection approximation, such tiestandard deviation of vacancy
relative to that of output is equal to3 as reported in Merz (1995%5. Then solving the model in

steady state pins dowq,, the cost of job searching.

4 Numerical Results

This section first reports the simulated moments of the mosielg the projection approximation
which will be shown as the top performing one among all theragmations considered in this

paper. Such set of moments reveals the model’s ability ihca@mg some of the key regularities

12The projection solution is used to calibrate the model asiindst accurate approximation of the policy function
evaluated with Den Haan and Marcet's (1994) accuracy tabstrenEuler equation error test. The detailed discussion
of accuracy is presented in the next section.

11



of the business cycle and in particular, of the labor mark8econd, the simulated density of all
the approximations will be presented. Third, the qualityhef approximations will be examined
by implementing Den Haan and Marcet’s (1994) test and thereagduation error test from Judd
(1992) and Judd (1998). Given the difference in accuracyrgnadl the approximations and to
study the implications of such difference, the simulatedmants of all the approximations will be

computed for comparison.

4.1 Simulated Moments

The model is simulated using the approximation generatethéyprojection method. This ap-
proximation outperforms all the perturbations in termsafuaacy. To this end, it is chosen as the
benchmark that represents the model’s ability of explgtine observed aggregate fluctuations, in
particular the fluctuations of the labor market variablethag reflect the contribution of the search
and matching framework incorporated in the model.

The simulation environment is similar to that specified inr¥€L995), Shimer (2005) and
Petrosky-Nadeau and Zhang (2013): the model is simulatéd ties. Each simulation contains
412 observations with the first 200 discarded. As the modglasterly calibrated, each simulation
contains effectively the observations of 212 quartersesmponding to about 53 years of quarterly
data presented in Shimer (2005) and Pissarides (2009). éAprthection method approximates
the model in levels, the simulated time series are trangdrby the natural logarithm, and then
detrended using the Hodrick-Prescott filter with a quaytemhoothing parameter 1600. From the
1000 simulations there are 1000 sets of moments, and onfvtdrage of these simulated moments

is reported.
[Table 2 about here.]

The model performs well in generating relative volatiktia frequently reported business cy-
cle aggregates such as consumption and capital stock. Almn¢abor market dimension, the
volatility of labor market tightness relative to that of thador productivitygg/op, reaches 133.
Whereas it is about half of 190 reported by Shimer (2005), it already exceed®7a plausible
target of a model with constant job destruction and progiigtshock only (see Pissarides (2009)).

Moreover, the model is capable of replicating the negatisklped Beveridge curve, i.@(u,Vv) in

12



table2. This is because that the aggregate unemployment as a atatblg will not immediately

respond to an increase in vacancy creating activities imdiby a positive productivity shock. The
household therefore cannot send more family members tolsagrwhich will lead to an increase
in unemployment and a positive relationship between vacand unemployment. Given that the
model assumes constant vacancy posting and searchingnmasporating no frictions other than

search, a richer structure is needed to generafgan) that closer to the empirical target.

4.2 Simulated Density

Before performing accuracy tests, all the approximatiolessanulated for the estimation of den-
sity. Such simulated density indicates, as noted in Aruadlz. €2006), a plausible range of the
state space in which accuracy test like the Euler equatiom &rst is conducted. For local approx-
imations like the perturbations, such indicated ranges@fstate space are particularly useful in
evaluating their ability of producing global implicatians

Each approximation is simulated once, with 1000 observations and the first 1000 discarded.
For comparison, all approximations are fed with the sameaesece of exogenous shocks in simu-

lation with which the density is estimated based on a norreaidd function.
[Figure 1 about here.]

Figure 1 depicts the simulated density of the two endogenous staigbles, i.e., capital and
employment, and other labor market variables. Note tha@&ch variable, the simulated densities
based on different approximations are similar and rougbhtered around the deterministic steady
state. Capital and employment range from 29 to 40 and fr@ @ Q96 respectively. The Euler
equation error test will accordingly be conducted on suciges. Besides, the simulated density
of vacancy filling rateq shows that under the calibration in secti®i3, most of the realizations
of this variable fall in between.8 and 1, exceeding unity very infrequently. Moreover, gities
Cobb-Douglas matching function and the valueg @hdmg, the realizations ofl that are smaller
thanmg correspond to those of labor market tightn@sthat are larger than one. This implies
that this calibrated model allows the vacancies to outnuirtiteeunemployment workers, whereas
it still captures the uncoordinated nature of the searckge® as the job finding ratedoes not

exceed unity as shown by its simulated denity.

BAndofatto (1996) formulates this uncoordinated naturehefgearch process BgVv, (1 —n)) < min{v,(1—n)},

13



Petrosky-Nadeau and Zhang (2013) have noted that, whemgdt#hagedorn and Manovskii’s
(2008) model using den Haan and Marcet’s (1990) parametégxpectations algorithm with a
spline basis, the vacancy rate can fall below zero at nesedh an extremely low frequency,
and therefore incorporated a nonnegativity constraintasancy in their characterization of the
model. Albeit the labor market in the model economy resembir@t described by Hagedorn
and Manovskii (2008) in many respects, the simulated dgs$iv shows that the realization of
vacancy remains positive at all frequencies, centeringsataterministic steady state valu®43
and ranging from about.02 to Q07, which covers roughly 50% derivation from the steadyestat
on each side. Given that the model generates about 1% deviatiabor productivity from its
steady state, this range of vacancy is sufficiently largectmamodate the empirical observation
that the vacancy is about 10 times more volatile than therlptmuctivity as reported by Shimer
(2005).

4.3 Den Haan and Marcet’s (1994) Accuracy Test

All the approximated solutions are firstly sent to Den Haad tarcet’'s (1994) accuracy test to
evaluate their performance in a dynamic and simulatioredhasvironment. To examine how well
the approximations satisfy the Euler equation for consiwnmnd employment respectively, the
test statistics are calculated and reported separatetiidamwo Euler equations. Starting with the
consumption Euler equation, inserting the functional faithe marginal consumptiori8) and

capital productivity {4) in (12) yields

(34) ot = B B (ot iiint +1-3) |

Defining the expression in the expectation operator as a aeable

(35) @1 = Be (aet it 41 )

Then the forecast error gf, 1 writes

(36) Uyr=Ee(@y1) — @1 =c ' =@

If the solution were exact, thar, 1 would have zero mean, and satisfy the following
(37) E[u+1®h(x)] =0

which impliesM(v, (1—n))/(1—n) = f(6) < min{6, 1} with the constant return to scale assumption on the matching
functionM(v, (1—n)). Therefore, whe® > 1, the search friction still exists and is nontriviaffifd) < 1.
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for any functionh : RK — RY and for anyk-dimensional vectox; belongs to the information
set on which the conditional expectation in the Euler eqma{d4) is formed. To evaluate the
performance of an approximation, inserting its simulationhe sample analog of the previous

equation

(38) Mr = (1/T) 3 0 (7

whereSMindicates the corresponding simula;ed seriesTatite length of simulation, and checking
if Mt is close to zero. Note thaklt could be made small by takingtd-) with small function
values, and owing to sampling errdfy will not be exactly equal to zero. To avoid such problems,
Den Haan and Marcet (1994) construct the following tesisdtat with the null hypothesis that the
approximation under evaluation is accurate, i.87) folds for this approximation, to examine if
M~ is significantly different from zero

(39) Ir = TMPW My

whereWr is some weighting matrix, chosen to take the following form

(40) W= 1/7) 3 [ (Em) (e on ()

When the solution is exact argbl goes to infinity,Jr converges to &2 distribution with, as
the Euler equation3d) is of dimension Ix 1, q x 1 degrees of freedom. If the value &f of an
approximation falls in the lower or upper critical regiortioéx? distribution, then there is evidence
against the accuracy of that approximation. The test §tafer the employment Euler equation
can be constructed following the steps abidveinserting the functional form of the marginal
disutility of labor (16), labor productivity {7) and two first derivatives of the matching function
(18) and @9) in (15) and noting the definition af;, f; and6; yields

Ky B Cti1 kv ) Kv(1—X —Nfia)
41) —L — =F | — | =4+ (1—-a)er [ —= u
“D Tnge ™ Ct+l< ntlivlﬂ “ (ml) T e )]

Defining the expression in the expectation operator as
a
(42) Q1= P <—E +(1—a)er+t (@) Ky Ky(1—X—n ft+1>>

Ctt1 ntlﬁ Ne+1 (1—1)%k+1
and the forecast error gf 1 writes
Kv
43 - v
(43) Ut+1 (1—n)ac Gr+1

Inserting the involved simulated series in the previousatign yieldsufﬂ with which the test

14To save notationp.1 andw_1 are recycled from35) and (36), and will be redefined below.
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statistic as given in39) can be constructed for the employment Euler equation.

As noted by Aruoba et al. (2006), the null hypothesis will bgected for all approximations
if T is sufficiently large. On the other hand, Den Haan and Mart@94) note that an accu-
rate/inaccurate approximation could fail/pass the tesh waiplausibleT simply by chance. To
control for such problems, each approximation is simuld@@D times and each simulation con-
tains 1000 observations with first 500 discarded. These $0@00lations produce 1008 values
for each approximation and the percentages oflthealues in the upper and lower 5% critical re-
gions of the distribution are documented. For an accurgieoapnation, both the two percentages
should be close to 5 as noted by Aruoba et al. (2006). An appidion is considered inaccurate,
however, if itsJy value falls in the upper 5% region too often, and rarely driophe lower 5%

region.

[Table 3 about here.]

Table 3 reports the test results. As can be seen, all the approxingsatisfy the consump-
tion Euler equation well, since all the percentages in col@rand 3 of the table are close to 5.
Meanwhile, as all the percentages in these two columns amasiin value, it is so far unclear
which solution method is preferred in terms of accuracy. theremployment Euler equation,
however, projection provides the most accurate approxamabutperforming perturbation of all
three orders, either in levels or in logs, as indicated byp#reentages in the last two columns.

Among all the perturbation approximations for the emplogtrteuler equation, the first order
perturbation in logs (log-linearization) is the least aate one since itdr falls in the upper critical
region too often (4@ percent) and seldomly drops in the lower critical regio® (2rcent). Still
at first order, the approximation in levels (linearizatiashieves a much higher degree of accuracy
with the upper tail percentage down to 12 and lower tail peigge rising to 2. Aruoba et al.
(2006) have also observed, when they compare solution metioo a real business cycle model
with endogenous labor choice, that linear approximatiotp@diorms log-linearization, contra-
dicting to the common practice. In comparison with linegpragimations, second and third order
perturbation further drives down the upper tail percentaghibiting a higher degree of accuracy.

Den Haan and Marcet’s (1994) test evaluates how well the lalion of an approximation

fits the Euler equations, and therefore has an implicatiothi® accuracy of the simulation-based
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results like simulated moments. Moreover, the constraaticthe test statistic requires no approx-
imation of the conditional expectation, which could be agpbial source of inaccuracy in addition
to that in the approximation itselt. One drawback of the test is that there is no economic inter-
pretation of the test result. The Euler equation error teté next section presents the results that

economically interpretable.

4.4 Euler Equation Error Test

The Euler equation error test from Judd (1992) and Judd (18@&8mines if the policy function
is consistently approximated over two consecutive perimdsvaluating a unit-free measure that
expresses the one-period optimization error in relatiarutoent consumption. Given the recursive
structure of the Euler equation, current consumption canriiten as a function of the next period
consumption and other model variables: for the consumEioler equation, rearranging4)
yields

(44 .= (m [po (aet ke 1-8)] )

Likewise, for the employment Euler equation, rearrang# yields

_ BA-Na [ G100 g (k1) K(l-x-nfua) )\ )
(45)Ct_<Et< KvCt+1 ( rli/r{—i_(l D& (nt+1) et (1-n)gtr1 )))

Inserting the involved approximations in the right handesaf the previous two equations

yields the current consumption implied by the approximategkt period consumption and other

approximated model variables
(46)

éitm pliedConEuler _ <IAEt [Bétjrll <ae?t+1|2ta+fllﬁt(xgll +1-— 5)} ) -1
(47)

éitmplied,EmpEuIer: Et B(ltr])q[ _Ctl—i/—l +(1_a)ezt+l @ Ryt Kv(l_X_An fi 1)
KyCii1 ﬁtﬁ Mgt (1-n)Gi+1

where”over the conditional expectation indicates thigeigtion has been explicitly approximated,

asinJudd (1992), using the Gauss-Hermite quadrature whetitiothe same number of quadrature
points as used in the projection method discussed in se8tibto compute the coefficientS.

and®,. The superscriptseEuler gndEMPEUeringicate the two implied current consumption are

15As noted by Judd (1992), the conditional expectation in thieEequation involves an integral that cannot in
general be evaluated explicitly and usually approximatid afinite sum.
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computed using the relationship given by the consumpti@heamployment Euler equatiorg4)
and @5), respectively.

The test statistic is essentially the difference betweenrtiplied and the actual approximated
current consumption, normalized as the common logariththefbsolute value of the difference

between unity and the ratio of the implied to the actual apipmated current consumption

AimpliedConEuler
o EEECoEuer_ jogy |1 A
EmpEuler Cimp”ed»EmpEuler
49 EEE uler _ |4 1_ i
- Q10 3

The two statistics above are computed at each and every poiat grid of the three state
variables, i.e., capital, employment and productivity.isTtest grid shares the same upper and
lower bounds with the grid used by the projection method rtisa 3.2 However, it contains
simply equispaced points (100 for capital, 100 for employhaad 80 for productivity) that are not
necessarily the collocation points. In other words, forpgh@ection approximation, its accuracy
is evaluated at the set of points other than the set on whielpdficy function is approximated.
The two sets may nevertheless partially overlapping. Devia in @8) and @9) from zero are
interpreted by Judd (1992) and many others as the relatitimmization error that results from
using a particular approximatioBEEEE = —1 implies a one dollar error for every ten dollars spent

andEEE = —3 implies a one dollar error for every thousand dollars spent

[Figure 2 about here.]

Figure2 depicts the consumption and the employment Euler equatron @he upper and the
lower panel of the figure respectively) of the projectionr@pmation in the capital-employment
space. In this and all the other figures throughout the restisfsection, productivity is held at
its steady state value (zero) unless otherwise specifiedte$he policy function is approximated
at the chosen collocation points, higher accuracy is aeliet and in the vicinity of those points:
in the figure there is a lattice of high accuracy. The pointemgtthe edges of the lattice meet
are the collocation points. Aside from this lattice, thejpction approximation demonstrates a
high degree of accuracy around the deterministic steadg.sTdne quality of the approximation

decreases, as capital and employment move away from tispectve steady state value. In the
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area where capital and employment are both very high/losvatsproximation reaches its lowest

accuracy level.
[Figure 3 about here.]

Since the consumption and the employment Euler equation &re both expressed in relation
to the same approximated current consumpti®BECONEuler and E E EEMPEUIET 35 given by 48)
and @9) are directly comparable. FiguBedepicts the difference between the consumption and
the employment Euler equation error, i.BEECONEUler_ g EEMPEUler of the projection approx-
imation. But for a few points the difference is smaller thanazin the entire capital-employment
space. This implies that, with the projection approximatite consumption Euler equation is in

general better satisfied than the employment Euler equation
[Figure 4 about here.]

Figure 4 plots the consumption and the employment Euler equatiaor efrthe third order
perturbation in levels. This (and all the other perturba@tiapproximation is built around the de-
terministic steady state. As capital and employment devii@m their respective steady state
value, the quality of approximation deteriorates. Likephgection approximation, the third order
perturbation satisfies the consumption Euler equatiorb#tan the employment Euler equation,
as the differenceE EECONEUler_ E E EEMPEUler i hegative everywhere in the capital-employment

space, see figurgbelow
[Figure 5 about here.]

To evaluate all the approximations and compare their pedoice on the entire three dimen-
sional grid, the maximum and average Euler equation erecamputed as in Judd (1992) and

many others. Tablé reports the results
[Table 4 about here.]

There are three important observations. First, all the@pprations satisfy the consumption
Euler equation better than the employment Euler equaticgsored by both the max and the

average error. Second, the projection approximation peddetter than all the perturbations in
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terms of the average error. This is not surprising, as alptreurbations are local approximations,
built around only one point, i.e., the deterministic steatite on the grid. The projection method,
however, allows its approximation to anchor on as many pdihie collocation points) as desired
on the grid, and therefore has a better global performanieed, Tamong all the perturbations and
for the consumption Euler equation, higher order (for betrel and log specifications) performs
uniformly better than the preceding order. Between level by specification, the first order
approximation in levels is superior to the first order appration in logs, in line with Aruoba
et al. (2006). Yet this relationship is reversed at the sé@yder and moving to the third order, the
approximation in levels again outperforms the approxiorain logs but only on average.

Turning to the employment Euler equation, only the prog@cttapproximation and the third
order perturbation in level are on average accurate. Yepolséive max errors suggest that none
of the approximations is acceptable in some areas on the-giadl the grid point where the Euler
equation error is positive, the ratio of the implied to théuat current consumption is negative,
meaning there is no consistent consumption plan can be mamiéveo consecutive period$. It
is then important to know in which areas the employment Eetpration error goes above zero
since some areas, as noted by Judd et al. (2010) and Judd2&1&), will never be visited in the
equilibrium of the model. The Euler equation error computesluch areas, regardless of its sign

and magnitude, contributes least to the evaluation of arcappation.
[Figure 6 about here.]

Using the third order perturbation as an example, the upgeelof figureb locates such areas
on the grid by plotting the employment Euler equation ernathie capital-productivity space and
holding employment at its upper bound. In the neighborhdatielower-right corner of the plot
where the productivity lower bound meets the capital upmambl, given employment is at its
upper bound, the error goes beyond 0 and up to 3. Note thatisto fhe productivity down to its
lower bound requires a sequence of negative productivaglshSince simulated correlation based
on the approximation suggests that both the capital andrtippoyment are positively correlated
with the shock, these two state variables would deviate frioendeterministic steady state and

move toward their respective lower, instead of upper boundssponse to such a sequence of

16This is a qualitative inconsistency. To this end, a consistés quantitative in nature if the corresponding Euler
equation error is negative.
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shock realizations. As the lower panel of fig@@shows, in simulation the model never hits the
lower-right corner of the grid where= —0.06 (its lower bound)k = 42 andn = 0.98 (the two
upper bounds}’ The Euler equation error computed in this area appearsitiieraot informative
and even misleading as it increases the average error.

In this regard, Den Haan and Marcet’s (1994) test presemtesgdtion4.3 complements the
Euler equation error test in evaluating the quality of thpragimations of this model. Building
its test statistic on the simulated time series in which theetation among the state variables
implied by the approximation has been taken into accounty Baan and Marcet’'s (1994) test
implicitly narrows down the test grid to the realized stgiace associated with the approximation.
As table3 reports, when examined using Den Haan and Marcet’s (1994)keth the projection
approximation and the third order perturbation in levelareurate whereas the former is superior

to the latter in the upper tail of the distribution.
[Figure 7 about here.]

Ignoring those redundant areas on the grid, the third ordévels outperforms all the other
perturbations in satisfying the employment Euler equatiesr comparison, figuré plots the—2
contours of the employment Euler equation error in the e&pitnployment space. For each per-
turbation, the area circled inside #2 contour is the region where the employment Euler equation
error is smaller than-2. In terms of the size of this-2 accuracy area, the third order in levels
dominates all the others. Moreover, for both level and logcdrations, higher order in general
performs better than the preceding order and at first onteal approximation is-2 accurate on
a larger area than that of log-linearization, which potdhticontributes to understanding the result
from Den Haan and Marcet’s (1994) test at this order.

To summarize, the projection provides the most accurateappation according to the Euler
equation error test. All the approximations satisfy thestonption Euler equation better than the
employment Euler equation. In addition, among all the pbgtions, the third order in levels is

the most accurate one, comparable to the projection appedian.

1To produce the simulated grid, all the approximations areukited in the environment described in sectia?
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4.5 Simulated Moments Comparison

This section presents the moments computed using the seduaries based on different ap-
proximations. All the approximations are simulated in thene environment as that described in
section4.1l For all the level approximations (the projection and theyreation in levels at all

three order), their simulated series are transformed byé#tearal logarithm before applying the

Hodrick-Prescott filter.
[Table 5 about here.]

Table5 reports the standard deviation of the selected model Vasaklative to that of out-
put or labor productivity. Taking those generated by simntathe projection approximation as
the benchmark since the projection approximation outper$oall the perturbations in terms of
accuracy, all the relative volatilities generated by pdyations are very close to the benchmark,
and to each other. The volatility of consumption, capitahpéoyment and labor productivity in
relation to that of output are even identical across all {iygr@ximations. The linear approxima-
tion tends to slightly overstate the relative volatility wdicancy and labor market tightness. For
log-linearization, though it appears the least accurapeagimation in terms of satisfying the em-

ployment Euler equation, the relative volatilities it geate are still very close to the benchmark.
[Table 6 about here.]

Moving to the (auto)correlation, as talBeshows, the results from all the approximations are
also very similar. This similarity among the simulated maowseoriginates from the similarity
among all the approximations in the neighborhood of therdetastic steady state and most fre-

guently, the realizations of the model fall in that region.
[Figure 8 about here.]

Figure 8 plots, for example, the approximated policy function of tleeancy and the labor
market tightness from the (log)linear approximation, thiectorder perturbation in levels and the
projection on the employment grid, holding the other twaestariables (capital and productivity)

at their respective steady state value. In addition, thediam of employment has been appended
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to the plot in order to show the distribution of the employmesalizations'® The approximated
policy function implies, in the vicinity of the steady stamployment, that is, between92 and
0.96, the corresponding values of the vacancy and the labdenghtness indicated by the four
approximations are very similar, and this vicinity, as tistdgram shows, happens to be the region
in which most of the employment realizations fall. The siatal series and therefore the simulated

moments, are accordingly similar across the four approtans.

5 Conclusion

In this paper | have solved a real business cycle model witbrlanarket search frictions using
the projection and the perturbation methods under the cioreal quarterly calibration. | then
implement Den Haan and Marcet's (1994) test and the Euleatexyuerror test from Judd (1992)
and Judd (1998) to evaluate the quality of all the approx@thatolutions. The results from the
two tests suggest that the approximation provided by thggtion method is the most accurate
among all the approximations, and the third order pertushan levels also achieves a degree of
accuracy comparable to that of the projection approximat#fonong all the perturbations and for
both log and level specifications, the results from the Eeatpration error test show that, higher
order performs on average better than the preceding order.

By comparing the respective test statistic for the consion@nd the employment Euler equa-
tion, | find that across all the approximations, the consumnpEuler equation is better satisfied
than the employment Euler equation. Moreover, the restdts Den Haan and Marcet’s (1994)
test suggest that the first order perturbation in levelse$gpred to the first order perturbation in
logs in satisfying the employment Euler equation. In switgf the consumption Euler equation,
the results from the Euler equation error test also indgc#tat the level specification performs
better than the log specification at first order.

To analyze the implications of the difference in accuracyagnall the approximations, | com-
pare the simulated moments based on different approximasiod find that all of them are similar
in value. Even for the approximations with a relatively loegdee of accuracy such as the first

order perturbation in levels and in logs, the simulated masiproduced by them are very close

1870 produce the histogram, all the approximations are sitedla the environment described in sectiba
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to those produced by the projection approximation. To emglais similarity, | simulate all the
approximations and present the resulting histogram of tieailizations and find that, for all the
approximations, most of their realizations fall in the ddgrhood of the deterministic steady state

of the model and in this neighborhood, all the approximatioehave similarly.
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A Appendices
A.1 Taylor Expansion
TheM-th order Taylor approximation o(Q) at the deterministic steady sta@b) is
Corollary A.1. An M-th order Taylor Approximation o2(Q) is written as
R R i ®]
- L - VN _zell
(A 1) Yt j; j! [ i!yzloc (Zt Z)

Proof. From Vetter (1973), a multidimensional Taylor expansiogiven by

_ o) v n =3 [N 5
(A-2) W (B =WE+ Y W (E) (B8 +Ru1(BB)
_ 1 B
(A-3) whereRy.1 (B.B) = i [ oMILW(E) (150 (B-2) M) ot

Differentiating 1) M times, a Taylor approximation at the deterministic steddtez is

1/1_ 1 1, 1
Y=g\ oY T 1Ye0 + 5Ye20" + .+ YoM O

1/1 1 1 5 1 M_1 _
+ 1 a}’z—f— ﬂyzoO'-f- EYZGZO' +...+ myzomflc (z—2)
1/1 1 1 5 1 M-—2 »©[2]
+ 21 (a)’z2 + ﬁyzzco-"f’ Eyzzcrzo- +...t myzzo'\"*zo ) (z—2
11 _
Moy (z—2)"™
Writing the foregoing more compactly yield81). 0

A.2 Projection Appendix

Starting with the capital grid, for any element of the ééte [kmin, Kmax With i being a positive

integer for indexing purpose, the linear transformation

(A-4) Mki):H_l’ i=12,..

ensures thap (ki) is bounded to the sét-1,1]. | chooseny elements from the set, collected in
the vectork; = [k{1 K2 ... kt”"]', such that after applying the linear transformatign4() to k;,
the elements of the resulting vecttk) = [6(k!) ¢(k?) ... &(k¥)]" are theny roots of the
following ncth Chebyshev polynomial basis

(A-5) TOK)=[To TdkK) T20k) ... To(@k))]
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whereT;(-) = cogiarccos-)) is theith Chebyshev polynomial witlp = 1 andT (¢(k;)) is of
dimension(ng + 1) x (ng+1).

Analogous to my choice of elements from the capital set, losko, andn, elements from

thesetwosetsy = [0t n? ... n"|'andz=[7 Z ... Z*]',thatafter being transformed by
¢(+), are then, andn; roots of the followinghsth andn,th Chebyshev polynomial basis respectively
(A-6) TOM))=[To Te(d(n)) T2(d(n)) .. Tay ($())]
(A-7) T($(@)=[To T(¢(z)) T2(0(z)) ... Tn($(z))]

whereT (¢(ny)) andT (¢(z)) are of dimensionin, + 1) x (N + 1) and(nz+ 1) x (nz+ 1) respec-
tively.

As in Judd (1992), Aruoba et al. (2006) and Caldara et al. Z2ahe multidimensional basis
of the approximated policy function is the Kronecker pradafcthe above three one-dimensional

basis

(A-8) X(k,nt,z) = T(0(ke)) @T(9(nr)) @ T(¢(z))
with dimensionng x ng) whereng = (ng+1) x (Nh+ 1) x (n,+1) is the number of all triplets of the
collocation points along three dimensions, i.e., the nurobgrid points in the three-dimensional
state spac@min, Kmax X [NMmin, max X [Zmin, Zmax. With this multidimensional basis, the approxi-
mated policy function of consumption and vacancy writes
(A-9) G = X(k, N, z)Oc = Pe(k, N, z; Oc)
(A-10) Ve = X (ki e, )OOy = Ry (ke e, 5 Ov)
where”indicates these are approximated policy functiand®; and®, are two vectors of coef-
ficients to be determined. Botl andy; are of dimensioring x 1).

| solve for the unknown coefficient®; and ©, from the two Euler equationd ) and (5)

using den Haan and Marcet’s (1990) functional iteratioreaath grid point

1. usej-th iteration of the coeﬁicient@é andG)\j,, to compute
(A-11) M1 = (L—x)ni+moPy (K, n,Z;0) ™ (1—n)", i=1,2,...ng
(A-12) Ki1= (1= 8K+ & () ()" — P (K. 4:0))
—KuPe(k, N, 21 ©)) — moky(1—1})
(A-13) Gtz = Po(Ki1,N1,PZ + & O)
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(A-14) Vi1 =R (K 1,n 1,07 +;0))

2. given A-11) - (A-14) and approximating the conditional expectation with thessaHermite

guadrature, the Euler equation for consumptib2) (vrites

(A15)  (4) =By {Pc (K104 + V207500)
r=1

. . _ . _ (L)r
X (1— d+d exp(pz{ + \/QGZr) (k) H(tye)? a) FI]
where(; andwy are Gauss-Hermite quadrature points and weights. Fronothgding solve
for &. Analogously, the Euler equation for employmet)(writes
" 1-n)mo N (Al
(A-16) ()" =%<1—n{>” (@) B

m

X ; {Pc (ki+1, n{+17 pz{ + ﬂo@;@é) 1

X (— (nta) R, (k’iJrlv M.1,PZ +V20T; Q‘;)
(2= ayexp(pg +v20%r) (K1) (nh2) "k
(1= X0R (K1, P2 +/204:0})
(1=n)mo(1-r.y)"
B NKy I:)V (kLH_u n{+17 pZ{ + \/EUZr ; G)\J/> ) oy :|
1-n 1- n{+1
from the foregoing solve fovi °

+

3. repeat sted - 2 for all ng grid points, get an estimation of the new coefficients wité th

following regression

(A1) Ot = ol el t| = [X(k. e 2) X (e e )] X (ke Tk 2)' [6 9]
whereX(ki, nt,z ) is the multidimensional basis defined #-8). Then obtain thé¢j +1)-th

iteration of the coefficients with the following updatindeu
(A-18) Otl=pA0*H L (1-N)O
whereA € (0, 1] is a parameter for stabilizing the iteration.

4. repeat stepp-3till |©*1—0I| is smaller than a desired level of tolerance.

The choice of parameters for the iteration is summarizeabidy.
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[Table 7 about here.]
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Table 1:

Quarterly Calibration

symbol value symbol value
Y -1.25 X 0.036
a 0.36 n 0.5

o 0.026 Oss 0.72

B 0.99 Nss 0.94

p 0.95 Ky 0.0875
(o 0.0073 Ky 0.1451

Table 2:Second moments from Data and Projection Solution

Statistic Data Model Statistic Data Model
Oc/Oy 0.40 0.34 Ou/0y 6.11 3.37
Ok/Oy 0.22 0.29 oy/0y 7.31 7.31
On/Oy 0.54 0.22 Og/0p 19.10 10.32
Oy 1.87 1.05 op/oy  0.68 0.84
p(u,v) -0.894 -0.1957
Table 3:DHM Accuracy TestT = 500
Jr for Consumption Euler Jr for Employment Euler
<5% > 95% <5% >95%
Linear 45 6.2 4.2 12.0
Log-linear 5.6 6.2 2.0 40.8
Perturbation 2 4.5 55 45 9.5
Perturbation 2 in Log 6.4 6.0 5.7 11.0
Perturbation 3 4.5 5.6 4.6 10.1
Perturbation 3 in Log 6.4 6.0 6.5 11.0
Projection 5.4 5.2 5.4 5.3
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Table 4:Euler Equation Error Test

Consumption Euler Employment Euler

max. error avg. error max. error avdg. error

Linear -3.25 -3.98 2.22 -0.47

Log-linear -3.07 -3.91 0.45 -0.64

Perturbation 2 -3.63 -4.86 4.17 -0.93
Perturbation 2 in Log -4.11 -4.98 4.24 -0.78
Perturbation 3 -3.93 -5.27 3.30 -1.14
Perturbation 3 in Log -4.12 -5.25 3.25 -0.68
Projection -2.95 -5.50 3.70 -1.79

Table 5:Relative Standard Deviation from Data and Model

Statistic Data Modell Method Statistic Data Modell Method
oc/oy 0.40 0.34 (PJ) oy/oy 6.11 3.37 (PJ)
0.34 (P3) 3.39 (P3)
0.34 (P2) 3.40 (P2)
0.34 (LN) 3.42 (LN)
0.34 (LLN) 3.38 (LLN)
ox/oy, 0.22 0.29 (PJ) oy/o, 731 7.31 (PJ)
0.29 (P3) 7.31 (P3)
0.29 (P2) 7.34 (P2)
0.29 (LN) 7.40 (LN)
0.29 (LLN) 7.30 (LLN)
on/0y 0.54 0.22 (PJ) Op/0p 19.10 10.32  (PJ)
0.22 (P3) 10.32  (P3)
0.22 (P2) 10.25 (P2)
0.22 (LN) 10.72 (LN)
0.22 (LLN) 10.31 (LLN)
Oy 1.87 1.05 (PJ) op/oy 0.68 0.84 (PJ)
1.05 (P3) 0.84 (P3)
1.05 (P2) 0.84 (P2)
1.05 (LN) 0.84 (LN)
1.05 (LLN) 0.84 (LLN)

x PJ.projection, P3: 3rd order perturbation, P2: 2nd ordetuggation, LN: linearization, LLN: log-
linearization
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Table 6:Correlation and Autocorrelation from Data and Model

Statistic Data Model | Method Statistic Data Model | Method

p(u,V) -0.8949 -0.1957 (PJ) p(u,0) -0.971 -0.554  (PJ)
-0.2000 (P3) -0.553  (P3)
-0.1975 (P2) -0.550  (P2)
-0.1952 (LN) -0.544  (LN)
-0.1970 (LLN) -0.556  (LLN)
p(u, p) -0.408 -0.677 (PJ)  p(v,0) 0.975 0.925  (PJ)
-0.677  (P3) 0.924  (P3)
-0.676  (P2) 0.927  (P2)
-0.674  (LN) 0.922  (LN)
-0.677  (LLN) 0.924  (LLN)
p(V, p) 0.364 0.813 (PJ)  p(6,p) 0.396 0.953  (PJ)
0.813  (P3) 0.953  (P3)
0.814  (P2) 0.953  (P2)
0.812  (LN) 0.946  (LN)
0.815  (LLN) 0.955  (LLN)
p(Uu,_1) 0936 0795 (PJ) pw,v1) 0.940 0329 (PJ)
0.795  (P3) 0.329  (P3)
0.795  (P2) 0331  (P2)
0.796  (LN) 0.328  (LN)
0.796  (LLN) 0.329  (LLN)
p(6,6.1) 0941 0597 (PJ) p(p.p_1) 0.878 0.660 (PJ)
0.600  (P3) 0.660  (P3)
0595  (P2) 0.660  (P2)
0.597  (LN) 0.660  (LN)
0.599  (LLN) 0.660  (LLN)

x PJ:projection, P3: 3rd order perturbation, P2: 2nd ordetuggation, LN: linearization, LLN: log-
linearization

Table 7:Parameters of the Iteration

symbol value  source

Number of collocation points for capital Nk 11 Aruoba et al. (2006)
Number of collocation points for employmenty, 11

Number of collocation points for productivity n, 9 Aruoba et al. (2006)
Number of Gauss-Hermite points m 9 Judd (1992)
Tolerance for convergence et 14
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Figure 1:Simulated Density
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Figure 2:EEE of Projectionz=10
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Difference in EEE

Figure 3:Difference in EEEz=0
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Figure 4:EEE of Projectionz= 0
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Difference in EEE

Figure 5:Difference in EEEz=0
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Figure 6:Employment EEE of Perturbation 3 (n = nmax) and Simulated Gri
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Figure 7:Employment EEE of Perturbations,2 Contour
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Figure 8:Approx. Policy Rule and Histogram
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