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Abstract

Aggregate productivity suffers when workers and machines are not matched with

their most productive uses. This paper builds a model that features industry-specific

markups, industry-specific returns to scale, and establishment-specific distortions, and

uses it to measure the extent of this misallocation in the economy. Applying the model

to restricted U.S. census microdata on the manufacturing sector suggests that misallo-

cation declined by 13% between 1982 and 2007. The finding of declining misallocation

starkly contrasts with the 29% increase implied by the widely-used assumptions that

all establishments charge the same markup and have constant returns to scale.
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1 Introduction

Aggregate productivity retreats from its frontier when workers and machines mismatch

with their most productive uses. Formalized elegantly by Restuccia and Rogerson (2008),

this notion of misallocation has the potential to explain why countries differ in their in-

comes, or why aggregate productivity changes over time. Yet, quantifying the extent of

this misallocation is challenging, in part because we do not observe productivity directly.

Most commonly, we must infer an establishment’s total factor productivity from its rev-

enue. This inference is a two-step process: first, we must deduce how establishments set

prices, so we can map revenue to output; then, we must deduce how they produce, so we

can map output to productivity.

To infer productivity and measure misallocation, this paper builds a quantitative model

in which returns to scale and markups of price over marginal cost differ across indus-

tries and time. We implement the model on restricted U.S. Census microdata covering the

U.S. manufacturing sector from 1977 through 2007. In the process, we jointly estimate

markups and returns to scale for individual industries over time. Our estimates show that

industries differ meaningfully in both markups and returns to scale, with standard devia-

tions across industries of about one-third the average level of the respective parameters.

Moreover, while the average markup remained relatively constant over this period, the av-

erage returns to scale fell, starting off as increasing and ending as nearly constant. We use

these parameters to infer productivity, and find that misallocation in U.S. manufacturing

declined 13% between 1982 and 2007.

Allowing for heterogeneous markups and returns to scale is crucial when estimating

productivity and misallocation. The widely-used Hsieh and Klenow (2009) model is a spe-

cial case of our framework in which all industries have a common markup and constant

returns to scale. Figure 1 contrasts the downward trend in misallocation under our esti-

mated parameters with the upward trend implied by the Hsieh-Klenow assumptions. Both

measures of misallocation answer the question: how much more productive would the

U.S. manufacturing sector be if it were as misallocated today as it was in 1982? If misal-

location by this measure has increased, productivity today would be higher at 1982 levels

of misallocation. Indeed, as the dashed red line shows, the assumptions of a common

markup and constant returns to scale suggest a 29% increase in misallocation over the last

25 years. By contrast, the solid blue line traces out the declining trend in misallocation

from our model.

We arrive at the declining trend in misallocation by estimating markups and returns to

scale using a control-function approach rooted in Olley and Pakes (1996) and Levinsohn
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Figure 1: Misallocation in U.S. Manufacturing

Change in U.S. Manufacturing TFP at 1982 Levels of Misallocation
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Note: Misallocation is the distance between aggregate productivity and a frontier where
marginal revenue products are equalized across establishments in each industry. Positive
(negative) values indicate an increase (decrease) in misallocation relative to 1982.

and Petrin (2003). Our estimating procedure infers markups and returns to scale even

in datasets, like the U.S. Census microdata, where we observe revenues, but not output

or prices. For this procedure, we derive a model-based estimating equation that relates

establishment revenue to its inputs and to industry size, as in De Loecker (2011). We map

the reduced-form revenue elasticities to the markup and returns-to-scale parameters using

model equations. In line with prior empirical work [e.g. Hall (1990), Basu and Fernald

(1997), Basu et al. (2006), Broda and Weinstein (2006)], we find that both markups and

returns to scale indeed vary across industries. Moreover, the average markup for U.S.

manufacturing has remained relatively constant over time, while returns to scale have

declined, starting off as increasing in 1982 and ending as nearly constant by 2007.

The reduction in returns to scale—from increasing to nearly constant—can be inter-

preted as a narrowing gap between average and marginal cost. We argue that this reduc-
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tion in returns to scale is intuitive. A common motivation for increasing returns is the

presence of fixed costs (to build an establishment, to add an assembly line, to acquire

more land, etc.,). Viewed through that lens, our estimates suggest that fixed costs are

being spread over more units of output, bringing average cost closer to marginal cost. In-

deed, the U.S. manufacturing sector more than doubled in size between 1977 and 2007,

with value added increasing 132% in real terms. For returns to scale not to have declined,

fixed costs would have had to grow at least as much as output. This growth of fixed

costs could have taken place either through an extensive margin with a growing number

of establishments, or through an intensive margin with growing fixed costs within each

establishment. We argue that neither margin seem positioned to overturn the reduction

in returns to scale. First, the number of manufacturing establishments grew only 2% over

this period, making the extensive margin an unlikely source of growth for fixed costs. Sec-

ond, while within-establishment fixed costs are notoriously difficult to measure directly,

we use external data on automotive plants as a case study: we show that many first-order

sources of fixed costs—number of manufacturing platforms, number of vehicle models per

platform, plant surface area—have not kept pace with output, suggesting the estimated

reduction in returns to scale as a sensible feature of the data.

We show that the decline in returns to scale is the key to rationalizing the different

trends in misallocation between our model and the Hsieh-Klenow model. In short, ignor-

ing the variation in markups and returns to scale leads to measures of productivity that

conflate productivity and distortion. These conflated measures of productivity lead to in-

correct inferences about the extent to which the most productive establishments bear the

largest distortions, and hence lead to incorrect measures of misallocation. Our estimates

suggest that the Hsieh-Klenow model understates misallocation on average. Over time, as

the assumption of constant returns better fits the data for the U.S. manufacturing sector,

the Hsieh-Klenow model understates misallocation less and less. This better fit drives the

apparent upward trend in misallocation under a common markup and constant returns.

Outside their relevance for measuring productivity and misallocation, the patterns we

document for markups and returns to scale also fit with the recent literature on the decline

of the labor share, and, more broadly, the changing division of value added. For instance,

a large literature documents a thirty-year decline in labor’s share of value added both for

the United States and for other economies [e.g., Elsby et al. (2013), Karabarbounis and

Neiman (2014), Barkai (2020)]; we find this decline to be even larger for the U.S. man-

ufacturing sector. Within that literature, using different approaches, both Karabarbounis

and Neiman (2014) and Barkai (2020) suggest that the decline in labor’s share of value

added might not have been offset by an equivalent increase in the capital share. The result-
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ing implication is that the share of profits in value added increased over time. Indeed, De

Loecker et al. (2020) find evidence of rising profit rates both among U.S. publicly traded

firms and in the national income accounts.

In contrast to a recent literature emphasizing changes in markups (see Basu (2019) for

a survey), we find that the rising profit share for the U.S. manufacturing sector has been

driven primarily by the reduction in the returns to scale. Most work in this literature shares

a common idea: changes in factor shares can be understood as changes in either markups

or in returns to scale. We jointly estimate industry-level parameters underlying demand

and production from data on revenue. By estimating the parameters at the same level of

aggregation, we can readily compare the relative contributions of returns to scale and of

markups to changing factor shares. By contrast, approaches in the spirit of De Loecker et al.

(2020) differ along two broad dimensions. First, rather than jointly estimating production

and demand from data on revenue, these approaches treat revenue as a proxy of output.

This approach would not identify the markup in our model, consistently with Bond et al.

(Forthcoming) who show in a more general setting that using a revenue elasticity in place

of an output elasticity provides no information about markups. Second, these approaches

estimate industry-level production parameters and infer firm-level markups. By allocating

many more degrees of freedom to markups, these approaches provide markups with more

explanatory power. Although we emphasize our parameter estimates, we also show in a

later robustness check that the divergent trends in misallocation we document are robust

to attributing all changes in profits to rising markups.

In light of recent evidence from Autor et al. (2020) and Kehrig and Vincent (2021) that

larger firms have systematically lower labor shares, we also generalize the baseline model

to introduce markups—and therefore factor shares—that vary across establishments in an

industry. We find that this generalization to firm-specific markups—modeled in the spirit

of Atkeson and Burstein (2008)—implies lower levels of misallocation, yet still features

divergent trends in misallocation between our model and the Hsieh-Klenow model. The

generalization of the baseline model supplements the work of a growing literature that

continues to refine the measurement of distortions (see Hopenhayn (2014) for a review).

We show that, conditional on an industry-specific demand elasticity, the additional varia-

tion in markups changes the marginal revenue products of establishments and hence their

measured distortions. In changing the level of measured misallocation, the generalization

to variable markups within an industry is similar to Edmond et al. (2018) and other work

where richer depictions of establishment behavior reduce the level of measured misallo-

cation [e.g. Bartelsman et al. (2013), Asker et al. (2014), Gopinath et al. (2017)], and

those who emphasize measurement issues that make inferring misallocation challenging
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[e.g. White et al. (2018), Bils et al. (2017), Haltiwanger et al. (2018)].

While the core of this paper reflects a model where firms combine capital and labor

to produce value added, we also provide evidence that the same patterns of misalloca-

tion hold for the production of gross output. Since a recent literature has highlighted the

limitations of standard control-function methods for estimating returns to scale in gross

output [e.g., Ackerberg et al. (2015), Gandhi et al. (2020)], we present three complemen-

tary approaches that yield parameter estimates for a gross-output version of our model.

Although none of the three approaches can simultaneously overcome all the measurement

challenges highlighted in the literature, all estimates overturn the sharp rise in misallo-

cation from the Hsieh-Klenow setting. Moreover, two sets of estimates show a decline in

returns to scale, while in the third we impose constant returns for identification purposes.

Within the recent literature on misallocation, our paper’s closest counterparts are two

works that emphasize the importance of measurement within the Hsieh-Klenow model:

Bils et al. (2017) and Haltiwanger et al. (2018). The former explains the upward trend in

U.S. manufacturing misallocation as an artefact of measurement error that increased over

time. While we think measurement error is an important topic to address in the microdata,

we show in Appendix F that the Bils et al. (2017) procedure risks conflating measurement

error with model misspecification if returns to scale are not constant: ignoring a decline

in returns to scale, like the one we document, could lead an econometrician to infer an

increase in measurement error. The latter paper, Haltiwanger et al. (2018), uses eleven

manufacturing products to show that deviations from production and demand assump-

tions in the Hsieh-Klenow model lead to estimates of establishment-level distortions that

behave differently than the distortions in the baseline model. We share their emphasis on

deviations from standard Hsieh-Klenow assumption and view the works as complementary.

The remainder of the paper proceeds as follows. In section 2 we derive a measure

of misallocation in a model that allows for variation in markups and returns to scale;

we then develop a toolkit to understand the discrepancies in measured productivity and

misallocation that arise from ignoring the variation in these parameters. We map the

model to the data, detail the estimation procedure, and present the estimates of markups

and returns to scale in section 3. Section 4 presents our measure of misallocation and

uses the toolkit to explain why our measure deviates from the Hsieh-Klenow measure

that assumes a common markup and constant returns. Section 5 highlights the robust

difference between the trends in misallocation in the two models across a number changes

in model structure and estimation. Section 6 concludes.
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2 Model

We build a model that features industry-specific markups, industry-specific returns to

scale, and establishment-specific distortions. We then show how ignoring the variation

in markups and returns to scale leads to measures of productivity that conflate productiv-

ity and distortions, and leads to incorrect measures of misallocation.

2.1 Deriving a Measure of Misallocation

In this section, we derive a measure of misallocation for the aggregate economy, account-

ing for industry variation in markups and returns to scale. We measure misallocation as

the distance between aggregate productivity and a frontier where inputs are reallocated

so that marginal revenue products are equal across establishments in each industry. We

proceed in three steps. First, we show the aggregation in the model, allowing us to map

from the distortions that establishments face to aggregate misallocation. Second, we show

how establishments optimally respond to the distortions they face; these expressions al-

low us to characterize establishment behavior when we reallocate resources and change

the distortions that they face. Third, we derive a measure of misallocation by compar-

ing aggregate productivity before and after resources are reallocated. Since much of this

derivation is standard in the literature, here we highlight the structure of the model and

the key inputs into the measure of misallocation. We refer interested readers to appendix

A for more details.

Aggregation

A representative firm aggregates the output Yi of I different industries using a Cobb-

Douglas production technology, and sells the aggregate output Y in a perfectly-competitive

market, as in (1):

Aggregate Y =
I∏
i=1

Y θi
i with

I∑
i=1

θi = 1 P =
I∏
i=1

(Pi/θi)
θi = 1. (1)

Cost minimization by this aggregating firm implies that the elasticities θi from the produc-

tion function correspond to the share of each industry’s value added (PiYi) in aggregate

value added (PY ). This insight allows us to define the aggregate price index P , which we

choose as the numeraire.

Within each industry, an aggregating firm combines the output Yie of Ni differentiated
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establishments using a constant-elasticity-of-substitution (CES) technology, as in (2):

Industry Yi =

 Ni∑
e=1

Y
σi−1

σi
ie


σi
σi−1

Pi =

 Ni∑
e=1

(
1

Pie

)σi−1

 −1
σi−1

. (2)

The CES aggregator implies that each establishment in the industry faces a downward-

sloping demand curve for its output. Cost minimization by the industry aggregating firm

leads to the standard CES price index Pi. Note that that the elasticity σi can potentially

vary across industries.

Each establishment in the industry produces value-added output Yie by combining its

total factor productivity Aie, capital Kie, and labor Lie using the Cobb-Douglas production

function in equation (3):

Establishment Yie = AieK
αKi
ie L

αLi
ie , αi = αKi + αLi . (3)

The returns to scale in production are αi, the sum of output elasticities αKi and αLi; when

returns to scale differ from unity, we have non-constant returns to scale. Moreover, returns

to scale can differ across industries. We discuss the generalization of this model to gross-

output production in section 5.

Optimization

Each establishment maximizes profits πie by choosing how much capital and labor to hire:

πie = PieYie − (1 + τLie)wiLie − (1 + τKie)RiKie. (4)

The establishment takes as given the input prices Ri and wi from perfectly competitive

input markets; however, the effective cost of an input varies across establishments, with

τKie and τLie capturing the input-specific distortions for capital and labor. Consider, for

instance, regulations that mandate the benefits that establishments have to provide to

workers. These regulations change the effective cost of hiring labor. If two establishments

are subject to different regulations, then these establishments also differ in their τLie.

Establishments that face large distortions have high marginal revenue products. The

first-order conditions from profit maximization, shown in equation (5) for capital and

equation (6) for labor,

MRPKie =
αKi
σi
σi−1

PieYie
Kie

= (1 + τKie)Ri (5)
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MRPLie =
αLi
σi
σi−1

PieYie
Lie

= (1 + τLie)wi, (6)

show that establishments trade off the marginal contribution to revenue of a given input

(MRPKie or MRPLie) against the effective cost of hiring it. For instance, an establish-

ment facing a cost-increasing labor regulation has a large τLie; this establishment will hire

labor until the contribution to revenue of the last unit hired, MRPLie, exactly offsets the

effective cost of hiring labor (1 + τLie)wi. In short, faced with larger distortion, the estab-

lishment requires larger marginal revenue products to justify hiring inputs. Moreover, in

the absence of distortions, marginal revenue products are equalized in an industry. This

notion will help define a productivity frontier and subsequently misallocation.

Optimal responses to larger distortions lead establishments to charge higher prices.

The establishment price in equation (7) is a markup over marginal cost:

Pie =
σi

σi − 1︸ ︷︷ ︸
Markup

[(
Ri

αKi

)αKi ( wi
αLi

)αLi] 1
αi (

Yie

) 1−αi
αi

[
(1 + τKie)

αKi (1 + τLie)
αLi

Aie

] 1
αi

︸ ︷︷ ︸
Marginal Cost

. (7)

The model allows the markup σi/(σi − 1) in equation (7) to be industry specific. Further-

more, the introduction of potentially non-constant returns to scale allows the marginal cost

to change with the establishment’s scale of production. Under the standard assumption of

constant returns to scale (αi = 1), marginal cost is constant and independent of output Yie.

However, if returns to scale deviate from unity (αi 6= 1), then marginal cost is increasing

in output for decreasing returns to scale, and vice versa. Lastly, larger distortions increase

the marginal cost of production and thus force the establishment to charge a higher price.1

An establishment responds to large distortions by choosing a smaller input bundle and

shrinking in size. Since much of this paper is about the allocation of resources across

establishments in an industry, the relevant measure of size captures the establishment’s

value added relative to the value added of the industry, sie in equation (8):

sie =
PieYie
PiYi

=

Aie( 1 + τK,i
1 + τKie

)αKi
(

1 + τL,i
1 + τLie

)αLi
 1

σi
σi−1−αi

Ni∑
e=1

Aie( 1 + τK,i
1 + τKie

)αKi
(

1 + τL,i
1 + τLie

)αLi
 1

σi
σi−1−αi

. (8)

1Formally seen by rewriting (7) to eliminate output term Yie.
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For instance, if the labor distortion faced by the establishment (1 + τLie) increases relative

to the average labor distortion in the industry (1 + τLi), the establishment declines in size.

We can also see from equation (8) that the size of the establishment after we reallocate

resources will depend solely on its productivity Aie. From the earlier first-order conditions,

we know that equalizing marginal products is akin to equalizing distortions. The reallo-

cation of resources would then eliminate the relative distortions in equation (8), and the

counterfactual size of the sie|τ=τ would be strictly increasing in productivity Aie.

Misallocation

By combining the model aggregation with the establishment responses to distortions, we

follow the literature and measure misallocation as the distance between aggregate pro-

ductivity and its frontier. At this frontier, all establishments in the industry have the same

marginal revenue products. The more that actual productivity lags from its frontier, the

larger is the measure of misallocation. Formally, industry misallocation Φi in equation (9):

Φi =
TFPi

∣∣
τ=τ̄

TFPi
=

 Ni∑
e=1

(
Aie × ΩTFP,τ=τ̄ ,ie

)σi−1

 1
σi−1

 Ni∑
e=1

(
Aie × ΩTFP,ie

)σi−1

 1
σi−1

, (9)

captures the distance between actual industry total factor productivity TFPi and its fron-

tier where distortions, and hence marginal revenue products, are equalized across es-

tablishments TFPi|τ=τ̄ . Since industry output is produced using a CES technology, as

per equation (2), the industry total factor productivity TFPi is also a CES aggregate of

establishment productivity Aie. The scaling factor ΩTFP,ie—which we discuss below in

more detail—captures the extent to which each establishment shapes industry productiv-

ity. When we reallocate resources to equalize marginal revenue products, each establish-

ment’s scaling factor changes from ΩTFP,ie to ΩTFP,τ=τ̄ ,ie. We now provide some intuition

about this change in scaling parameters and then define them in terms of model objects.

Since a highly distorted establishment becomes more integral to industry productivity

when its distortions are removed, the extent of misallocation depends on which establish-

ments bear the greatest distortions. If the most productive establishments also bear the

largest distortions, we measure more misallocation than if less productive establishments

bear the same distortions. In short, the correlation between productivity and distortion

shapes the extent of misallocation, a notion first emphasized by Restuccia and Rogerson
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(2008).2 In our model, this notion relies on the claim that the scaling factor ΩTFP,τ=τ̄ ,ie

increases more relative to the scaling factor ΩTFP,ie when an establishment is highly dis-

torted. We substantiate this claim below after relating the scaling factors to model objects.

The scaling factors are based on establishments’ revenue productivity TFPRie, which

summarizes the impact of distortions on the establishments. As in Foster et al. (2008),

TFPRie measures an establishment’s ability to generate revenue per input bundle:

TFPRie =
PieYie

K
αKi
ie L

αLi
ie

= PieAie. (10)

Equation (10) highlights the implication that, when comparing two establishments with

the same physical productivity Aie, a higher revenue productivity TFPRie reflects a higher

price. As we showed earlier, a higher price reflects larger distortions.

As the model focuses on the allocation of resources across establishments, the scaling

factors compare the average revenue productivity of the industry, TFPRi, with the rev-

enue productivity of an establishment, TFPRie. Equation (11) shows that this relative

revenue productivity depends on the size of the establishment and the relative distortions

that it faces. In a comparison of two equally productive establishments, the more dis-

torted establishment would have a smaller TFPRi/TFPRie ratio. Equation (12) shows

that the relative revenue productivity after equalizing marginal products is a function of

the post-reallocation size of the establishment.

ΩTFP,ie =
TFPRi

TFPRie

=

(
PieYie
PiYi

)αi−1
(

1 + τK,i
1 + τKie

)αKi
(

1 + τL,i
1 + τLie

)αLi

(11)

ΩTFP,τ=τ̄ ,ie =
TFPRi

TFPRie

∣∣∣∣
τ=τ

=

(
PieYie
PiYi

∣∣∣∣
τ=τ

)αi−1

=


[
Aie

] 1
σi
σi−1−αi

Ni∑
e=1

[
Aie

] 1
σi
σi−1−αi


αi−1

(12)

Before formally characterizing how the scaling factors in equations (11) and (12) differ

from each other, we want to emphasize how they are shaped by variations in markups and

returns to scale. First, deviations from constant returns to scale (i.e. αi 6= 1) imply that

the size of the establishment affects its revenue productivity. By contrast, in the Hsieh-

2Hopenhayn (2014) makes clear that a discussion of correlations in this setting requires the comparison
of the same proportional distortion. In his summary and re-framing of the literature, correlations matter
because the same proportional distortion τLie would displace more labor at a more productive establishment.
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Klenow model, returns to scale are constant and the size term drops out of the scaling

factors; for instance, the counterfactual TFPR ratio in equation (12) is then unity for all

establishments, regardless of industry. Second, the difference between the markup σi/(σi−
1) and the returns to scale αi shapes the counterfactual size of the establishment in (12).

In our model, two industries could be populated by equally productive establishments,

and yet different wedges between markups and returns to scale would lead the industries

to differ in their counterfactual size distributions. Under the Hsieh-Klenow assumptions,

the counterfactual size distribution would be the same in both industries. We examine the

impact of these types of differences on misallocation in greater detail in section 2.2.

Returning now to the measure of misallocation, we show that, when rid of its dis-

tortions, a more distorted establishment becomes more integral to industry productivity.

In equation (13) we isolate the establishment-specific components of the relative scaling

factors:

ΩTFP,τ=τ̄ ,ie

ΩTFP,ie

∝

[(
1 + τKie
1 + τK,i

)αKi (1 + τLie
1 + τL,i

)αLi] σi
σi−1−1

σi
σi−1−αi

. (13)

Since establishment productivity Aie enters both scaling factors in the same manner, the

only establishment-specific difference between the two comes from distortions. Note that

the exponent on the distortions in (13) is positive, so that the derivative of ΩTFP,τ=τ̄ ,ie/ΩTFP,ie

with respect to the distortions is positive. In other words, the relative increase in scaling

factor ΩTFP,τ=τ̄ ,ie is greater for a more distorted establishment.

Having defined all elements of industry-level misallocation, we use the model structure

to express the economy-wide misallocation Φ as the geometric average of the industry

measures Φi, as per equation (14):

Φ =
∏
i∈I

Φθi
i . (14)

Misallocation here captures the aggregate productivity loss from distortions faced by es-

tablishments within industries.

While this measure is standard within the literature, its construction implicitly relies on

some additional assumptions. For instance, by focusing on equalizing distortions within

industries, we leave average distortions unchanged across industries. This assumption

overlooks the potential productivity improvement from reallocating resources across in-

dustries. Moreover, this measure of misallocation assumes no changes in entry and exit of

establishments when we alter distortions. Another potential concern might be the absence
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of taste (i.e., demand) shocks from the benchmark model. For that particular case, we

show in appendix D that the measure of misallocation is unchanged for a simple extension

where we allow establishment-specific taste parameters. In short, Φ is a counterfactual

that holds all non-distortion parameters—including tastes—fixed; the measure of misallo-

cation above would correctly capture productivity losses even in that extended model.

2.2 Ignoring the Variation in Returns to Scale and Markups

In this section, we show that inappropriately imposing constant returns to scale and a

common markup leads to incorrect measures of productivity and misallocation. Imposing

constant returns to scale when returns to scale are decreasing, or understating the markup

of price over marginal cost, leads us to measure more distorted establishments as more

productive. This spurious positive correlation between productivity and distortion leads

us to overstate misallocation. We use the expressions we derive in this section to help us

explain in section 4 why and when the divergent trends in misallocation arise.

The discrepancies we highlight arise from inappropriate mappings from the observable

establishment revenue to the unobservable establishment productivity. As we emphasized

in the introduction, mapping from revenue to productivity is a two-step process: first we

map revenue to output with the help of a pricing model, and then we map output to

productivity with the help of a production function. We begin to formalize this notion

by combining the demand for establishment output with the establishment production

function, and derive the expression for establishment productivity Aie in equation (15):

lnAie =
σi

σi − 1
ln

(
PieYie
PiYi

)
− αi ln

[
K

αKi
αi
ie L

αLi
αi
ie

]
+ lnYi. (15)

This expression clarifies the first mapping by showing the markup σi/(σi−1) as the elastic-

ity of productivity with respect to the revenue-based measure of size PieYie/(PiYi). Further-

more, returns to scale in production αi highlight the second mapping, as αi is the elasticity

of productivity with respect to the input bundle under the assumption of constant returns

to scale K
αKi/αi
ie L

αLi/αi
ie . We now explore the discrepancies in measures of productivity and

misallocation from imposing constant returns to scale and a common markup.

Discrepancy from Imposing Constant Returns to Scale

To measure total factor productivity Aie, we need to impose a production function on the

data; as suggested by equation (15), if we mismeasure the returns to scale in production,

we incorrectly measure productivity. We formalize this notion in equation (16) by compar-
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ing the productivity Âie measured under constant returns to scale to the productivity Aie
measured under returns to scale αi:(

Âie
Aie

)
CRTS Discrepancy

=

(
K

αKi
αi
ie L

αLi
αi
ie

)αi−1

. (16)

For example, if we impose constant returns to scale on an industry where returns to scale

are decreasing, then the exponent on the input bundle in equation (16) is negative. As a

result, if we compare two equally productive establishments in this decreasing returns to

scale industry, then the more distorted establishment with the smaller input bundle would

be perceived as more productive. The discrepancy works in the opposite direction when

returns to scale are increasing: more distorted establishments with smaller input bundles

appear less productive than they are.

These discrepancies in measured productivity lead us to discrepancies in measured mis-

allocation. In equation (17) we compare the misallocation Φ̂i derived under the imposition

of constant returns to scale with the misallocation Φi derived under the returns to scale αi:

(
Φ̂i

Φi

)
CRTS Discrepancy

=

 Ni∑
e=1

(
Aie

TFPRi

TFPRie

∣∣∣∣
τ=τ̄

Ξcrts,ie
1−αi

)σi−1
 1
σi−1

 Ni∑
e=1

(
Aie

TFPRi

TFPRie

∣∣∣∣
τ=τ̄

)σi−1
 1
σi−1

, (17)

where Ξcrts,ie =

{[
1 + τKie
1 + τK,i

]αKi
αi

[
1 + τLie
1 + τL,i

]αLi
αi sie|τ=τ̄

sie

}
.

When returns to scale are constant so that αi = 1, then the exponent on the establishment-

specific scaling factor Ξcrts,ie is 0, and the ratio in (17) collapses to 1: the two measures

of misallocation are identical. However, deviations from constant returns to scale lead to

incorrect measures of misallocation.

The size of the discrepancy in misallocation depends on the extent to which returns to

scale are not constant, and on the correlation between productivity and distortion. Note

that the scaling factor Ξcrts,ie takes values above 1 for heavily distorted establishments;

each of the three ratios defining the scaling factor exceeds 1 for a heavily distorted estab-

lishment. Under decreasing returns to scale, the positive exponent on Ξcrts,ie puts larger

weights on the distorted establishments. If productivity and distortions are positively cor-

related, then the numerator in (17) exceeds the denominator, and we overstate misalloca-
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tion. For the same positive correlation of productivity and distortion, an industry in which

returns to scale are increasing would induce a negative exponent on Ξcrts,ie and lead us to

understate misallocation if we inappropriately impose constant returns. After estimating

returns to scale, we use these expressions to understand how imposing constant returns

leads the Hsieh-Klenow measure of misallocation to deviate from our measure.

Discrepancy from Imposing a Common Markup

We also need the markup so as to map establishment revenue to establishment produc-

tivity; as hinted by equation (15), an incorrect markup leads to incorrect measures of

output and productivity. We formalize this notion in equation (18) where we compare the

productivity Âie, measured under the markup generated by σ̂i, with the productivity Aie,

measured under the true markup σi:(
Âie
Aie

)
Markup Discrepancy

=

(
PieYie
PiYi

) σ̂i
σ̂i−1

− σi
σi−1

. (18)

In short, imposing an incorrect markup leads to a measure of productivity that is a function

of the establishment size PieYie/(PiYi). For instance, when the imposed markup overstates

the true markup, then the exponent on establishment size is positive. Consequently, if we

compare two equally productive establishments, then the more distorted establishment

will be smaller in size, and would be incorrectly perceived as less productive. In this

respect, overstating the markup induces similar discrepancies in measuring productivity as

does understating the returns to scale in equation (16).

The imposition of an incorrect markup results in an incorrect measure of misalloca-

tion. To anticipate our subsequent decomposition, we formalize this notion under the

assumption of constant returns to scale. In equation (19), we compare the misallocation

Φ̂i measured under the incorrect markup to the misallocation Φi measured under the true

markup:

(
Φ̂i

Φi

)
Markup Discrepancy

=

 Ni∑
e=1

sie|τ=τ̄ Ξmarkup,ie

σ̂i−σi
σi−1

 1
σ̂i−1

, (19)

where Ξmarkup,ie =
sie|τ=τ

sie

If the markup is measured correctly, so that σ̂i = σi, then the establishment-specific scaling

factor Ξmarkup,ie disappears; and, since the relative establishment sizes sie|τ=τ̄ sum to 1

by definition, there is no error in measuring misallocation. However, deviations from the
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correct markup lead to discrepancies in measured misallocation.

The magnitude of the discrepancy in measured misallocation depends on the direction

in which we mismeasure the markup, and the correlation of productivity and distortion.

We note that the scaling factor Ξmarkup,ie takes values greater than 1 for distorted estab-

lishments since distorted establishments grow larger in size when the distortions are re-

moved. Consider a setting in which productivity and distortion are positively correlated.

If we understate the markup, the scaling factor puts more weight on the large, productive

establishments, and puts less weight on the small, unproductive establishments. This re-

scaling of establishment size makes the expression in equation (19) exceed 1, leading to

a measure of misallocation that is too large. By contrast, overstating the markup makes

the exponent on the scaling factor negative, reversing the impact of the scaling on the rel-

ative establishment sizes, and leading us to understate misallocation. Below we use these

expressions to understand the forces that differentiate our measure of misallocation from

the Hsieh-Klenow measure that imposes a common markup and constant returns to scale.

3 Mapping the Model to Data

In this section, we show how to map the available U.S. Census microdata to measure distor-

tions and productivity in U.S. manufacturing. With data only on establishment revenue—

not output or prices—we emphasize the need for an estimating equation that jointly esti-

mates returns to scale and price markups. We show that the reduced-form elasticities from

this estimating equation inform us about profit shares, and that the model can be used

to translate these reduced-form elasticities into returns to scale and markups. We then

provide estimates of returns to scale and markups that are consistent with the estimated

profit shares.

3.1 Data

Our analysis relies on two core data sets from the U.S. Census Bureau: the Census of Man-

ufactures (CMF) and the Annual Survey of Manufactures (ASM). The Census data sets

provide us with the establishment-level variables from which we infer productivity and

distortions. The CMF is conducted every five years (for years ending in 2 and 7) and con-

tains information about all manufacturing establishments in the United States. The ASM

is conducted in all non-Census years and covers establishments with at least 250 employ-

ees, as well as a randomly sampled panel of smaller establishments. On average, the ASM

surveys 50,000–65,000 establishments selected from the approximately 350,000 establish-
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ments in the CMF. From these datasets, we obtain measures of value added, hours worked,

materials expenditures, capital stock, and the relevant price deflators. The industry price

deflators come from the NBER-CES manufactuing database, and the capital stocks are con-

structed following Foster et al. (2016a). Our sample period spans 1977 through 2007. We

exclude establishments whose information is imputed from administrative records, as well

as those with missing information.

As industry classification in the U.S. changed during the sample period, we build off the

concordance made by Fort and Klimek (2015) that assigns establishments a time-consistent

NAICS (North American Industrial Classification System) 2002 code. For a small number

of the 400+ 6-digit NAICS industries, we identify discontinuities in industry employment

and establishment counts around the years where industry classification changed.3 If the

NAICS dictionaries suggest that the industries in question are cross-listed, we attempt to

merge them into a single industry. When the merging eliminates discontinuities, we use

the merged industries; otherwise, we exclude the industries from analysis. We also exclude

industries that contain fewer than five establishments in any given year.

To construct more comprehensive industry measures of expenditures on labor, we sup-

plement the Census data on salaries and wages with BLS measures of benefit payments.

While the ASM and the CMF exhaustively cover many aspects of manufacturing establish-

ments, the U.S. Census microdata on total labor compensation is much sparser; only direct

payments to labor for services in production (i.e., salaries and wages) are widely docu-

mented. By contrast, for a smaller sample of establishments, the BLS-run National Com-

pensation Survey collects data on wages, paid leave, insurance, retirement contributions,

legally required benefits, and supplemental pay. From these data, the BLS constructed for

us unpublished estimates of the hourly wage and the hourly total benefit cost. Using these

data, we construct a BLS Adjustment with which we can adjust the Census industry labor

payment to reflect payments to labor:

BLS Adjustmenti,t =
BLS hourly wagei,t + BLS hourly benefitsi,t

BLS hourly wagei,t
.

Given the survey size, to pass BLS disclosure review, our BLS Adjustment factors are con-

structed at the NAICS 3-digit level for five-year intervals spanning 1983–2007.4

3We construct mid-point growth rates, and flag growth rates of establishment counts or hours worked
that exceed 0.5 in absolute value.

4We apply BLS Adjustment factors from 1983–1987 to the Census data in both 1987 and 1982.
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3.2 Step 1: Measuring Distortions

To measure misallocation, we need to know the distortions faced by an establishment rela-
tive to the average distortions in the industry. We derive relative distortions by rearranging
the first-order conditions from equations (5) and (6) and dividing by their weighted av-
erages over all establishments in the industry. The resulting expressions, in equations
(20) and (21), are independent of the returns to scale and markup parameters, which are
common to all establishments in the industry, and map transparently to Census data:

1 + τKie
1 + τK,i

=

PieYie
Kie Ni∑

e=1

PieYie
PiYi

(
PieYie
Kie

)−1
−1 =

Value Addedie
Capital Stockie Ni∑

e=1

Value Addedie
Value Addedi

(
Value Addedie
Capital Stockie

)−1
−1 (20)

1 + τLie
1 + τL,i

=

PieYie
Lie Ni∑

e=1

PieYie
PiYi

(
PieYie
Lie

)−1
−1 =

Value Addedie
Labor Hoursie Ni∑

e=1

Value Addedie
Value Addedi

(
Value Addedie
Labor Hoursie

)−1 . (21)

The model interprets high revenue productivity in inputs as an indicator for the pres-

ence of distortions. In a world without distortions, this model suggests that all estab-

lishments hire inputs so as to equalize their average capital PieYie/Kie and average labor

PieYie/Lie revenue productivities. If an establishment has a high revenue productivity in a

certain input, it would maximize profits by continuing to hire that input until this measure

of revenue productivity declined and equaled that of the other establishments in the in-

dustry. If an establishment in the data has a high average revenue productivity in a given

input, it must have been prevented from hiring more of the input; hence, the model assigns

this establishment a high distortion.

These strong assumptions identify distortions and reflect the model’s attempt to de-

scribe a steady-state economy. In a dynamic setting, we can think of frictions that might

prevent an establishment from hiring the steady-state profit-maximizing quantity of an in-

put. Asker et al. (2014), for instance, focus on adjustment costs in the hiring of capital

as one reason that an establishment’s choice might deviate from these steady-state pre-

dictions. Nonetheless, for the purpose of measuring misallocation across longer periods

of time, we think these assumptions are a reasonable starting point. To match this view

of the model’s purpose, our estimates of model parameters and misallocation are based

on five-year periods; we also document the robustness of the main results in section 5 by

extending this estimating window to ten years.
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3.3 Step 2: Measuring Productivity

With data on establishment revenue, not output and prices separately, we cannot directly

estimate the returns to scale and markup we need to infer productivity. Instead, the rev-

enue elasticities from our estimating equation inform us about the division of value added

among labor, capital, and profits. Nonetheless, using model equations we can indirectly

map these reduced-form revenue elasticities into returns to scale and markups, and then

infer establishment productivity.

A common approach to measuring returns to scale in data sets with establishment rev-

enue entails creating a proxy for output by dividing revenue PieYie with an industry price

index Pi; this common practice leads to a downward bias in estimated returns to scale that

was first pointed out by Marschak and Andrews (1944) and later made particularly salient

by Klette and Griliches (1996). Intuitively, this bias arises because we expect the most

productive establishments to hire the largest input bundles, to produce the most output,

and—when output markets are imperfectly competitive—to charge the lowest prices. If

the most productive establishments charge the lowest prices, then the proxy for output

is likely to understate output most for these productive establishments. A cross-sectional

estimator using this output proxy would understate the increase in output from having the

large input bundles, and hence underestimate returns to scale.5

The derivation of our estimating equation highlights this downward bias in returns-

to-scale estimates. Specifically, we follow De Loecker (2011) and combine two model

equations: the establishment’s production function and the demand for its output. Re-

arranging this combined expression to solve for the ratio of revenue PieYie and the price

index Pi, and taking logs, we derive the estimating equation (22):

ln

(
PieYie
Pi

)
= βKi ln(Kie) + βLi ln(Lie) + βYi ln(Yi) + βAi ln(Aie), (22)

where βKi =
αKi
σi
σi−1

, βLi =
αLi
σi
σi−1

, βYi =
1

σi
, and βAi =

σi − 1

σi

and PieYie = Value Addedie, Kie = Capital Stockie, Lie = Labor Hours, 6

Pi = NBER-CES Industry Price Indexi, PiYi =

Ni∑
e=1

Value Addedie, Yi =
PiYi
Pi

.

The revenue elasticities βi,L and βi,K are quotients of the returns-to-scale parameters and

5That revenue elasticities are not synonymous with production-function parameters has also been promi-
nently emphasized in work by Cooper and Haltiwanger (2006) and Foster et al. (2016b), among others.

6We compute total labor hours as the sum of the reported production-worker hours and the calculated
non-production-worker hours following Kehrig (2011).
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the markup of price over marginal cost. Since we expect establishments to price at or above

marginal cost, the gross markup exceeds 1. As a result, even when correctly estimated, the

revenue elasticities understate the returns-to-scale parameters.7

Although they do not directly estimate returns to scale, the revenue elasticities βKi and

βLi are useful descriptors of differences across industries: they correspond to capital’s and

labor’s share of value added and together imply an industry’s profit share. Rearranging

the first-order conditions from equations (5) and (6), and summing across establishments

within an industry, we show in (23) that βKi and βLi are the distortion-inclusive expendi-

tures on inputs as a share of value added:

βKi =

Ni∑
e=1

(1 + τKie)RiKie

PiYi
and βLi =

Ni∑
e=1

(1 + τLie)wiLie

PiYi
. (23)

In addition, we show in equation (24) that industry profits are the residual share of value

added (i.e., the difference between one and the sum of the revenue elasticities):

Πi

PiYi
= 1− (βKi + βLi). (24)

Since we expect establishments to earn weakly positive profits, the expression in (24)

emphasizes that the sum of revenue elasticities is bounded from above by 1 in this model.

This is yet another way to see the bias emphasized by Klette and Griliches (1996): if this

model correctly characterizes the world, and if we lived in a world with returns to scale

αi in excess of 1, the standard estimating equation would still produce revenue elasticities

that sum to less than 1.

The third revenue elasticity βYi, the elasticity of establishment revenue with respect to

industry output, is key to identifying the returns to scale and markup parameters from

the revenue elasticities βKi and βLi. Specifically, the inverse of βYi is the elasticity of

substitution σi, from which we can construct the markups σi/(σi − 1). With the estimated

markup we can then back out the returns to scale parameters αKi and αLi as the products

of the markup and the respective revenue elasticities. With the parameters for the markup

and the returns to scale in hand, we can infer productivity.

We estimate β̂Li, the first of the three key elasticities, using the rearranged first-order

condition for labor in expression (23). We map this expression to the data by multiplying

the sum of salaries and wages reported in the U.S. Census microdata by the BLS Adjustment

7This estimating equation can also be derived from a gross-output production function that is Leontief in
an intermediate input whose price is proportional to the price of output, as in the Monte-Carlo experiments
of Ackerberg et al. (2015).
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factors we detailed in section 3.1. In this way, our measure of industry labor expenditures

attempts to capture not only the wage payments to labor, but also the benefits and indirect

payments, from insurance to retirement contributions, that are not widely reported to the

Census. To estimate β̂Li, we divide this measure of labor costs by the industry value added:

β̂Li =

 Ni∑
e=1

Salaries and Wagesie

× BLS Adjustmenti

Ni∑
e=1

Value Addedie

. (25)

This β̂Li estimate implicitly assumes that the labor distortions faced by establishments

are priced into the labor costs reported by establishment while distortions that are not

priced into reported labor costs net to zero within an industry. More formally, let us label

by τL,P,ie distortions are be priced into reported labor costs and by τL,U,ie distortions that

are not priced. An expanded version of equation (23) would then read as

βLi =

∑
e=1

(1 + τL,P,ie + τL,U,ie)wiLie

PiYi
=

∑
e=1

(1 + τL,P,ie)wiLie

PiYi︸ ︷︷ ︸
Data

+
wiLi
PiYi

∑
e=1

(τL,U,ie)
wiLie
wiLi

,

where the data on the (BLS-adjusted) labor share represents the distortions that are priced

in, and where we are additionally assume that appropriately-weighted unpriced distor-

tions net out to zero.8 As a robustness check in section 5, we also estimate this elasticity

from the variation in labor usage across establishments. Even under these different as-

sumptions required to thus estimate the elasticity, we find the path of U.S. manufacturing

misallocation to look very different under the assumptions of our model and those of the

Hsieh-Klenow model.

We estimate the remaining two elasticities βKi and βYi using a two-step Generalized

Methods of Moments (GMM) procedure based on the control-function approach in Levin-

sohn and Petrin (2003). This approach addresses the issue that productivity is unobserved

in estimating equation (26) by substituting out the unobserved productivity with a func-

tion of observable variables. The choice to estimate the labor elasticity βLi in an earlier

step is driven by the Ackerberg et al. (2015) critique that highlights the inability of the

control-function procedure to identify the labor elasticity under standard assumptions. We

8Hsieh and Klenow (2009) assume that distortions are unpriced, which implies that reported labor ex-
penditures represent undistorted wiLie. This assumption would be inconsistent with using the reported labor
share from the data to proxy for the model’s labor share, which should be inclusive of distortions.
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show later that our findings are robust to imposing additional assumptions and estimating

all three elasticities jointly using the Ackerberg et al. (2015) estimator.
The control function we use is the choice of intermediate inputs, assumed to increase in

establishment productivity: ln(Mie) = m(lnKie, lnYi, lnAie). If we can invert the expres-
sion characterizing this choice to express productivity as a function of the intermediate
inputs, then we can substitute the unobservable Aie in equation (22) with observables Kie,
Mie, and Yi as follows:

ln

(
PieYie
Pi

)
− β̂Li ln(Lie)︸ ︷︷ ︸

pynetie

= βKi ln(Kie) + βYi ln(Yi) + βAim
−1(lnKie, lnYi, lnMie) + uie, (26)

where uie represents idiosyncratic shocks to production. For this substitution to be feasible

and useful, we need to assume that the choice of intermediate inputs is invertible, and that

productivity is the only unobservable component in the choice of intermediate inputs.9 The

first step of the procedure regresses the left-hand-side term of equation (26) pynetie on a

flexible polynomial of the observables to construct the predicted p̂ynetie.

The second step of the procedure uses the assumption that log productivity lnAie

evolves following a general first-order Markov process to construct moment conditions

with which to estimate the elasticities βKi and βYi. Specifically, we let εie,t correspond to

the mean-zero innovations in productivity realized at time t. For a given guess (β̂Ki , β̂Yi) of

the elasticities, we construct an implied measure of log productivity by differencing p̂ynetie
and β̂Ki ln(Kie) + β̂Yi ln(Yi). Regressing the implied productivity on a polynomial of its past

value gives us the implied innovation to productivity εie,t(β̂Ki , β̂Yi), and the following mo-

ment conditions with which to estimate the two key elasticites:

1

N

1

T

∑
e∈Ni

∑
t∈T

(
ε̂ie,t(β̂Ki , β̂Yi) lnKie

ε̂ie,t(β̂Ki , β̂Yi) lnYi

)
= 0. (27)

To estimate the elasticities in a model-consistent way, we constrain the parameter space

to meet three criteria. First, to ensure that industry profits are weakly positive and less than

1 as a share of value added, we impose that β̂Ki and β̂Li sum to a value between 0 and 1.

Second, to estimate labor and capital shares of value that are strictly positive, we require

that β̂Ki and β̂Li are strictly positive. Third, to back out gross markups with values between

1 and 2, we impose that β̂Yi be strictly positive and less than 0.5.10

9While common, these assumptions are strong and not directly testable. E.g., the second assumption
eliminates the possibility that distortions in intermediate input markets are correlated with productivity.

10We think this is a reasonable parameter range as common choices for the elasticity σi range between 3
and 11, and imply markups between 1.1 and 1.5.
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3.4 Division of Value Added in U.S. Manufacturing

By our estimates in panel A of table 1, labor’s share of value added in U.S. manufacturing

declined from 64% in 1982 to 39% in 2007; over the same period, the capital share in-

creased from 20% to 25%. Together, these changes in the labor and capital shares imply

that the profit share increased 20 percentage points, rising from 16% in 1982 to 36% in

2007. While, to our knowledge, this is the first paper to document these dynamics of in-

dustry profits for U.S. manufacturing, the findings are broadly consistent with other recent

work. The decline of the labor share has been widely documented for the U.S. and for

the global economy [e.g. Karabarbounis and Neiman (2014), Elsby et al. (2013), Barkai

(2020)]. Moreover, using data on the U.S. non-financial corporate sector, Barkai (2020)

Table 1: U.S. Manufacturing – Division of Value Added

Panel A Weighted Average across Industries

Capital Share Labor Share Profit Share
βKi βLi 1− (βLi + βKi)

1982 0.20 0.64 0.16
1987 0.21 0.61 0.18
1992 0.27 0.55 0.18
1997 0.25 0.49 0.26
2002 0.31 0.46 0.23
2007 0.25 0.39 0.36

Panel B Standard Deviation across Industries

Capital Share Labor Share Profit Share
βKi βLi 1− (βLi + βKi)

1982 0.19 0.20 0.17
1987 0.20 0.19 0.20
1992 0.25 0.20 0.20
1997 0.23 0.18 0.24
2002 0.25 0.19 0.21
2007 0.26 0.19 0.30

Note: Reported values in panel A are weighted averages of industry-level coefficients, with the
weights comprising industry value added. The underlying coefficients are estimated using five-
year panels. Data for the estimation comes from the Annual Survey of Manufactures from the
U.S. Census and the National Compensation Survey from the U.S. Bureau of Labor Statistics.
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finds that both the labor and capital shares declined, leading to an increase in profits over

the last 30 years. Complementary exercises in Karabarbounis and Neiman (2014) also sug-

gest that the capital share increased insufficiently to offset the decline in the labor share,

implying that profits increased.

In addition to documenting the evolution of these shares across time, we document in

panel B large variations in capital, labor, and profit shares across industries. At all points

in time, the standard deviation of profit shares across industries is roughly as large as the

average level of the profit shares. The standard deviations of capital and labor shares are

of quantitatively similar magnitudes. These large standard deviations imply that the U.S.

manufacturing sector is populated both by industries where profit margins are slim, as well

as by industries in which establishments earn large profits as shares of value added.11

3.5 Returns to Scale and Markups in U.S. Manufacturing

Accommodating these estimates of the profit shares requires deviating from the standard

assumptions of constant returns to scale and a common markup. From Basu and Fernald

(1997) we know that profits drive a wedge between markups and returns to scale under

very general assumptions on the functional forms for production and demand. In our

model, this relationship takes the following form:

1− Πi

PiYi
=

αi
σi

σi − 1

, (28)

where the industry profit shares Πi/(PiYi) act as a wedge between the returns to scale αi
and markup σi/(σi − 1). By imposing constant returns to scale and a markup of 1.5 in

every industry, the Hsieh-Klenow model implies that all establishments in all industries

earn a third of their value added as profits. We emphasize this point in figure 2. The

solid black line plots our estimated share of profits in value added. This rising measure of

profits contrasts with the invariance of profit shares in the Hsieh-Klenow model, plotted as

the dashed red line. The average profit share in 2007 of 0.36 roughly matches the Hsieh-

Klenow assumptions. However, the variation across industries and the smaller profit shares

throughout the 1980s and 1990s fit these assumptions less well.

11The literature on the decline of the labor share has also been complemented with evidence of increas-
ing concentration of output, e.g., Autor et al. (2020). In Appendix C we show that in a whole class of
monopolistic-competition models increases in profits—either from markups or from returns to scale–put
downward pressure on variance and concentration of market shares. In this class of models, rationalizing
increasing concentration requires a greater dispersion of productivity in addition to a change in profits.
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Figure 2: Profits as a Share of Value Added in U.S. Manufacturing

0
.1

.2
.3

.4
.5

Sh
ar

e 
of

 V
al

ue
 A

dd
ed

1982 1987 1992 1997 2002 2007
Year

Profit Share
Hsieh-Klenow Assumptions

Profit Share
Our Estimates

Note: Shaded area encloses 5-95% bootstrapped confidence interval.

To understand why markups and returns to scale can rationalize these variations in

profit shares, we focus on the fact that an establishment earns profits when its price exceeds

the average cost of production:

πie
Yie

=
σi

σi − 1
Marginal Costie︸ ︷︷ ︸

Priceie

− Average Costie. (29)

The profits per unit sold, as per equation (29), can increase either if the markup increases

or if the returns to scale decline. First, an establishment could increase its profit margin by

charging a higher markup over marginal cost. Second, an establishment could increase its

profit margin if average cost falls relative to marginal cost. A reduction in returns to scale

drives such a shift in costs. For example, constant returns imply a constant marginal cost,

while decreasing returns imply a marginal cost that increases with each unit produced. As
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a result, if returns to scale decline from constant to decreasing, the marginal cost for the

last unit would exceed the average cost of all units produced, increasing the profit margin.

Some combination of an increase in markups and a reduction in returns to scale drives the

increase in profit shares in the data.

In figure 3 (and in table 2), we show that, while markups increased from 1.46 to 1.48,

the decline in returns to scale from 1.23 to 0.96 is the primary driver of rising profit shares

between 1982 and 2007. In short, the U.S. manufacturing sector exhibited meaningfully

increasing returns to scale in the early 1980s.12 Since then, returns to scale have declined,

driving up marginal cost relative to the average cost of production. By increasing the profit

margin on each unit sold, this decline in returns to scale led to the rise in profit shares for

U.S. manufacturing.

Figure 3: Returns to Scale and Markups in U.S. Manufacturing
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Note: Shaded area encloses 5-95% bootstrapped confidence intervals. The reported
values are weighted averages across industries.

12Using industry data for 1959 to 1980, Basu and Fernald (1997) also find evidence in their Table 2 of
increasing returns to scale (γV ) for manufacturing, and in particular for durable goods.
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Table 2: U.S. Manufacturing – Returns to Scale and Markups

Panel A Average Level across Industries

Returns to Scale Markups
αi

σi
σi−1

1982 1.23 1.46
1987 1.20 1.44
1992 1.20 1.44
1997 1.12 1.51
2002 1.11 1.47
2007 0.96 1.48

Panel B Standard Deviation across Industries

Returns to Scale Markups
αi

σi
σi−1

1982 0.42 0.41
1987 0.46 0.40
1992 0.48 0.41
1997 0.49 0.43
2002 0.44 0.42
2007 0.58 0.42

Note: Reported values in Panel A are weighted averages of industry-level coefficients, with
the weights comprising industry value added. Data for the estimation comes from the Annual
Survey of Manufactures from the U.S. Census, and the National Compensation Survey from the
U.S. Bureau of Labor Statistics.

Much like profit shares, both returns to scale and markups vary widely across indus-

tries. The standard deviations of both measures range between one third and one half the

average values of their respective variables. For returns to scale, this variation suggests

that, even as returns to scale have declined on average, the U.S. manufacturing sector

is still comprised of both increasing and decreasing returns-to-scale industries. Similarly,

while the average markup may be large, there are many industries with markups low

enough to approximate perfect competition, as well as many industries where the degree

of imperfect competition, and hence the markup, is large.

While table 1 showed how changing capital and labor shares drive the evolution of

profits, here we show how the same evolution can be understood in terms of changing
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returns to scale and markups:

∆
Πi

PiYi
= −∆αKi

1(
σi
σi−1
|2007

) −∆αLi
1(

σi
σi−1
|2007

)
︸ ︷︷ ︸

Contribution of Returns to Scale

+

(
∆

σi
σi − 1

) 1−
(

Πi
PiYi
|1982

)
(

σi
σi−1
|2007

)
︸ ︷︷ ︸

Contribution of Markup

. (30)

An increase in an industry’s profit share between 2007 and 1982, ∆Πi/(PiYi), is driven

either by a decline in returns to scale −∆αi or an increase in the markup ∆σi/(σi − 1), as

per equation (30). Applying this decomposition to the manufacturing-sector data in tables

1 and 2, we show that of the 20-percentage-point increase in the manufacturing profit

share, 18 percentage points come from the decline in returns to scale and 1–2 percentage

points from the rise in the markup.13 We can further decompose the 18 percentage points

to emphasize separately the contributions of the capital and labor elasticities, αKi and αLi.

The increase in the capital elasticity, reflected principally by the rising capital share, put

downward pressure on the profit share of about –6 percentage points. Meanwhile, the

sharp decline in the labor elasticity, reflected in the falling labor share, contributed 24

percentage points to the increase in the manufacturing profit share.

This finding that a change in returns to scale is an important driver of changing profits

stands in contrast to recent work summarized by Basu (2019) that emphasizes sharp in-

creases in markups. Both our approach and the markup-emphasizing approach epitomized

by De Loecker et al. (2020) share the same common idea: changes in factor shares can

be understood as changes in either markups or in returns to scale. Our studies differ on

a number of data driven dimensions, from focusing on establishments versus focusing on

firms, to using U.S. Census versus accounting measures of inputs. Yet, the largest differ-

ence is methodological and focused on the estimation of output elasticities and markups.

We leverage the idea that revenue elasticities contain information on both output elas-

ticities and markups, while the approach of De Loecker et al. (2020) uses revenue elastic-

ities as proxies of output elasticities. Specifically, when looking at publicly listed firms in

COMPUSTAT, their approach infers a markup as the residual of a firm’s factor share that is

not explained by an estimated revenue elasticity; this revenue elasticity is used in place of

the theoretically-desired output elasticity. This approach would not identify the markup in

our model. We show in equation (23) that our revenue elasticities are equal to our factor

13A Jensen’s inequality term leads to the small discrepancy. The manufacturing profit share in table 1 is
the weighted average of industry profit shares, which is equal to 1 −

∑
i∈I θi

αi
σi
σi−1

. Meanwhile, the average

returns to scale and markup reported in table 2 are also weighted averages and do not imply exactly the
same manufacturing profit share 1−

(∑
i∈I θiαi

)
/
(∑

i∈I θi
σi
σi−1

)
.
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shares. Comparing a revenue elasticity and a factor share reveals no information about the

markup. Bond et al. (Forthcoming) emphasize this idea in a less parametric setting: they

show that if a revenue elasticity is used in place of an output elasticity, then the inferred

residual from a factor share contains no information about the markup.

Even when De Loecker et al. (2020) use the same U.S. Census data on the manufac-

turing sector as we do here, our approaches differ in how we estimate output elasticities.

When using Census data, they estimate their output elasticities as cost-shares. Since cost

shares sum to one, this approach is tantamount to imposing constant returns to scale at

every point in time. Imposing constant returns to scale over time will overstate the impor-

tance of markups: when returns to scale are assumed to be constant and time invariant,

the estimated markups will mechanically reflect all variation in profits over time.

3.6 Returns to Scale in Context

In this section we provide evidence of changes within U.S. manufacturing that are con-

sistent with a reduction in returns to scale. As we emphasized earlier, a given set of

profits can be rationalized by either markups or returns to scale. The difficulty in disen-

tangling markups from returns to scale, especially in data where we observe only revenue

and not price and quantity separately, motivates our earlier emphasis on estimating these

paratemeters jointly. We now discuss a particularly common—although not exclusive—

interpretation of non-constant returns and, through it, we rationalize the estimated reduc-

tion in returns to scale.

A common motivation for increasing returns is the presence of fixed costs (of building

an establishment, of building an assembly line, etc.,). Viewed through this lens, our esti-

mates are consistent with output growing faster than the fixed costs establishments face.

Namely, a decline in returns to scale of the sort we estimated—going from increasing to

nearly constant—reflects a narrowing gap between average and marginal cost. Output

growing faster than fixed costs implies precisely such a narrowing: fixed costs are spread

over more units of output, bringing average cost closer to marginal cost.

Between 1977 and 2007 the U.S. manufacturing sector more than doubled in size:

value added increased 132% and gross output increased 104%, both in real terms. For

returns to scale not to have declined, fixed costs would have had to grow at least as much

as output. Fixed costs could have grown in two ways. First, the number of establish-

ments could have increased proportionally with output. In this case, even if fixed costs

within establishments remained unchanged, the multiplication of establishments would

have driven up fixed costs. Second, fixed costs within the average establishment could
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have grown, perhaps as establishments physically grew in size, installed more assembly

lines, or incurred other fixed costs of operating.

Although the construction of new establishments generates perhaps the largest fixed

cost of production, this margin did not contribute meaningfully to the rise of fixed costs;

while the total output of the manufacturing sector more than doubled between 1977

and 2007, the number of manufacturing establishments grew only 2% over this period.14

With the near-constant number of establishments, the growth in output becomes an upper

bound on the growth of internal fixed costs.

As an accounting of within-establishment fixed costs is infeasible with administrative

Census data, we present a case study of automotive plants to argue that it is unlikely that

fixed costs kept pace with the growth of output over this period. Much like the broader

manufacturing sector, the U.S. automotive sector grew in terms of output but not in terms

of the number of assembly plants. In real terms, value added for NAICS code 336111,

automotive manufacturing, increased 50% between 1985 and 2007. Over the same period,

data from WardsIntelligence shows that the number of automotive plants did not keep pace

with the rise in output; the number of assembly plants actually declined from 76 to 68.15

Automotive plants did not change meaningfully in terms of first-order sources of within-

establishment fixed costs: the number of production platforms, the number of vehicle

series produced per platform, or in terms of the land area covered by the plants. The

largest cost for an automotive plant is in setting up a platform, which is a common design

and engineering base from which to produce vehicles with potentially different exteriors

(e.g., Ford uses the same platform to produce the F-series trucks and the Expedition sports

utility vehicle). The average plant has and continues to specialize in one vehicle platform:

in 1985 the average plant had 1.24 platforms while in 2007 the average was 1.41. Another

important fixed cost is the modification of platforms to produce multiple vehicle series.

The number of different vehicle series per platform did not increase; it actually declined

from 1.83 to 1.74. To look at the land area covered by plants we use The Harbour Report,
published in 1995 and 2007, which focuses on the Big Three automakers (Chrysler, Ford,

and General Motors). According to the report, the average assembly-plant floor increased

roughly 13% over the period in question, substantially less than the increase in output.

While a look inside a single industry is not dispositive about the entire manufacturing

sector, the case study illustrates the challenges of identifying fixed costs of production

that could have overturned our estimated shift from increasing to near-constant returns to

14Furthermore, we find that industries that experienced larger declines in returns to scale over a five-year
period also experienced slower growth in the number of establishments over the same period.

15Wards is one of the premier automotive industry publications. In addition to receiving sales data from all
auto manufacturers in the United States, Wards maintains detailed data on the automotive plants themselves.
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scale. When looking for evidence on fixed costs outside the case study, the type of capital

employed by the manufacturing sector could be indicative of what is happening to fixed

costs associated with production. To that effect, the measurement of physical capital is

often split into equipment and structures, where structures are more likely to represent

investments that are more intensive in terms of fixed costs. Yet, the share of structures in

capital for the U.S. manufacturing sector has declined from 46% in 1977 to 31% in 2007,

suggesting that finding a sharp rise in fixed costs could be challenge.

The challenge of identifying sharp increases in fixed costs is also reinforced by other

findings in the literature that point to firms increasingly spreading overhead costs across

establishments. In that spirit, Aghion et al. (2019) argue that improvements in Informa-

tion Technology during the 1990s likely lowered the overhead costs of managing multiple

product lines, while Fort et al. (2018) show that many manufacturing firms have grown

primarily by acquiring non-manufacturing establishments; both arguments are consistent

with the spreading of overhead costs across more establishments within a firm. In light of

the rather sedate growth of these enumerated first-order fixed costs, the general pattern

we identify could be overturned only if the unenumerated fixed costs (e.g., production

overhead) increased at rates far greater than the rate of output growth.16 We next turn to

misallocation and emphasize the importance of incorporating the documented variation in

markups and returns to scale.

4 Misallocation

In this section, we present our measure of misallocation and contrast it with the Hsieh-

Klenow measure that ignores variation in markups and returns to scale. We then decom-

pose the discrepancy in measurement and show that the divergent trends in misallocation

are driven by the decline in returns to scale over time. Lastly, we relate changes in misal-

location to changes in business dynamism.

4.1 Misallocation Has Not Been Increasing

Our estimates suggest that misallocation in U.S. manufacturing decreased over the last 30

years. Figure 4 quantifies misallocation as the potential increases in U.S. manufacturing
16Production overheads are also challenging to identify in the data. For instance, data on Selling, Gen-

eral and Administrative Expenses (SGA) from publicly-listed firms in COMPUSTAT is occasionally taken as
informative about overhead costs. The correlation of log firm size and log SGA is 0.9 for the period 1977-
2007. This almost-log-linear relationship is challenging to reconcile with standard framings of overhead
costs where they are assumed to be the same across firms (e.g., Bartelsman et al. (2013)). Moreover, even
if we were to overcome conceptual questions about whether SGA measures production overhead in an ac-
curate manner, these costs would have had to grow much faster than output to compensate for the slower
growth of the previously-discussed fixed costs.
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Figure 4: Misallocation in U.S. Manufacturing

Change in U.S. Manufacturing TFP from Equalizing Within-Industry Distortions
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TFP from equalizing the distortions establishments face within an industry, as per equation

(9). The solid blue line depicts our model while the dashed red line depicts the Hsieh-

Klenow model. By our estimates, the level of misallocation declined from 135% in 1982 to

104% in 2007. Meanwhile, misallocation increased under the Hsieh-Klenow assumptions,

so that in 2007 the U.S. manufacturing sector could have been 83% more productive,

nearly twice the potential increase of 42% in 1982. Figure 1 presented the same results

expressed as changes relative to 1982.

We focus on trends in misallocation, rather than levels, because the model is static and

consequently imposes the long-run steady state at each point in time. As we described in

section 3.2, the model infers distortions by assuming that, in a world without misalloca-

tion, establishments hire inputs until their average revenue products are equalized across

establishments. Short-run considerations can change that inference: for instance, adjust-

ment costs or the time required to build productive capital could lead non-distorted estab-
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lishments to differ in their average revenue products at a point in time. Despite these costs,

we follow the literature and impose the steady-state assumption for two reasons. First, by

using a static model we can transparently document the role that industry-varying markups

and returns to scale play in changing the measure of misallocation. Second, while these

short-run considerations may lead us to misstate the level of misallocation, they likely have

a smaller impact on trends across long periods of time.17

To understand the source of the divergent trends in misallocation, we next decompose

the discrepancy in measured misallocation into a component from imposing a common

markup across industries and a component from imposing constant returns to scale. In

figure 5 we preview the formal decomposition by plotting an intermediate measure of

misallocation in which we include only one source of industry variation. In the long-dashed

Figure 5: Misallocation in U.S. Manufacturing

Change in U.S. Manufacturing TFP from Equalizing Within-Industry Distortions
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17Also, White et al. (2018) use special imputation flags available in the 2002 and 2007 Census of Manu-
facturing to show that imputation procedures tend to compress the measured distribution of TFPR. The ten-
dency to impute the mean would likely lower the level of measured misallocation. However, if the tendency
to impute remained relatively constant over time, then trends in misallocation could be better measured.
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orange line we impose constant returns to scale, but maintain the estimated markups that

vary across industries. The discrepancy in measured misallocation between our model and

the Hsieh-Klenow model can now be split into two parts. The discrepancy from imposing

the common markup is the distance from the intermediate model’s long-dashed line and

the Hsieh-Klenow model’s short-dashed line. The discrepancy from imposing constant

returns to scale is the distance between the our model’s solid line and the new intermediate

model’s long-dashed one.

As we formally show over the next two sections, the divergent trends in misalloca-

tion are driven by the reduction in returns to scale between 1982 and 2007. As the U.S.

manufacturing sector began to better approximate the assumed constant returns in the

Hsieh-Klenow model, the discrepancy from imposing constant returns declined, leading to

a perceived rise in misallocation. Figure 5 shows that most of the discrepancy in 1982 came

from imposing constant returns to scale. By 2007, the discrepancy from imposing constant

returns was less than half its initial value in absolute terms, while the discrepancy from

imposing a common markup remained relatively unchanged. This reversal is reflected

in the changing distances between the three lines. The shrinking distance between our

solid blue line and the intermediate model’s orange long-dashed line reflects the declin-

ing discrepancy in misallocation from imposing constant returns to scale. By contrast, the

relatively stable distance between the Hsieh-Klenow model’s and the intermediate model’s

lines suggests a more stable discrepancy over time from imposing a common markup.

4.2 Aggregate Decomposition

Having shown in section 2 that incorrect markups and returns to scale lead to spurious

correlations between productivity and distortion, we now show how those spurious corre-

lations lead to discrepancies between our measure of misallocation and the Hsieh-Klenow

measure. We emphasize that these discrepancies are positive when we overstate the cor-

relation of productivity and distortion, and that the discrepancies are negative when we

understate the correlation of productivity and distortion.

In the following schematic, we present the theoretical decomposition where the second

row splits the aggregate discrepancy into one component from imposing constant returns

to scale and another component from imposing the common markup. The aggregate dis-

crepancy measures the difference in misallocation between the Hsieh-Klenow model (con-

stant returns to scale [CRTS] and a common markup of 1.5 everywhere [σ = 3]) and

our own (returns to scale [VRTS] and markups [σ̂] can both vary). We first capture the

component from imposing constant returns by comparing the CRTS and VRTS measures
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of misallocation under the estimated markups σ̂. We then capture the component from

the common markup by comparing the common markup (σ = 3) misallocation to the vari-

able markup (σ̂) misallocation under CRTS. We can further decompose each component

to understand the contribution of decreasing versus increasing returns to scale, as well as

understating versus overstating the markup.

Aggregate Discrepancy

ln
ΦCRTS,σ=3

ΦV RTS,σ̂

↙ ↘
Driven by Constant Returns to Scale Driven by the Common Markup

ln
ΦCRTS,σ̂

ΦV RTS,σ̂
ln

ΦCRTS,σ=3

ΦCRTS,σ̂

↙↘ ↙↘
Decreasing RTS Increasing RTS Understated Overstated

ln
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θi

(
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)
ln
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θi

(
Φi,CRTS,σ̂

Φi,V RTS,σ̂

)
ln
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(
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Φi,CRTS,σ̂

)
ln
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σ̂≤3

θi

(
Φi,CRTS,σ=3

Φi,CRTS,σ̂

)

Table 3 decomposes the aggregate discrepancy in misallocation and shows that a de-

cline in returns to scale explains why the discrepancy is smaller in 2007 than in 1982.

The first two rows of panel A show that the 50% difference in misallocation between the

Hsieh-Klenow model and our own in 1982 is split rather evenly between the imposition

of constant returns to scale and the imposition of a common markup. By 2007, the ag-

gregate discrepancy of 12% is split unevenly: the returns-to-scale component is half its

previous value in absolute terms, while the markup component is essentially unchanged

in size. These values quantify the visual decomposition from figure 5; the values in 1982

and 2007 capture the vertical distances among the three lines in the figure.

The third row of table 3 relates the discrepancy in misallocation to spurious correla-

tions of productivity and distortion. In parentheses, the third row reports the difference

in the correlation of productivity and distortion between the Hsieh-Klenow model and our

own. For instance, the top of panel A indicates that imposing constant returns to scale

on decreasing-returns industries in 1982 leads us to overstate the correlation of produc-

tivity and distortion by 0.13. By overstating this correlation, the constant-returns model

also overstates misallocation, in this instance by 17%.18 Across all deviations from the

Hsieh-Klenow assumptions and across both years, inducing spurious positive correlation

of productivity and distortion leads us to overstate misallocation, and inducing spurious

negative correlations leads us to understate misallocation.
18The 17% is scaled by the size of industries with decreasing returns to scale. This scaling helps explain

why understating the markup contributes only 3% to the overall discrepancy even though the correlation of
productivity and distortion is overstated by a 0.28. In short, many fewer industries overstate the markup.
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Table 3: Decomposing the Differences in Misallocation

Panel A: 1982

Aggregate Discrepancy
-0.4968

Driven by Constant Returns to Scale Driven by the Common Markup
-0.2589 -0.2378

Decreasing RTS Increasing RTS Understated Overstated
0.1761 -0.4470 0.0317 -0.2599

(0.1315) (-0.2805) (0.2847) (-0.2218)

Panel B: 2007

Aggregate Discrepancy
-0.1212

Driven by Constant Returns to Scale Driven by the Common Markup
0.1249 -0.2461

Decreasing RTS Increasing RTS Understated Overstated
0.4676 -0.3349 0.0455 -0.2853

(0.1850) (-0.2641) (0.1290) (-0.2891)

4.3 Misallocation and Business Dynamism

Having shown how the aggregate measure of misallocation has evolved over time, we now

relate the measures of misallocation to measures of business dynamism; we show that

industries with larger relative declines in misallocation experienced more job reallocation,

as well as more establishment entry and exit. For this exercise, we draw on the publicly-

available Business Dynamics Statics (BDS) from the U.S. Census. At the 4-digit NAICS

level, the BDS measures each industry’s job reallocation rate as the sum of the job creation

and job destruction rates. Entry and exit rates in each industry are measured as counts of

entering/existing establishments relative to a count of active establishments.

Table 4 shows that misallocation and business dynamism measures move in opposite

directions: industries where misallocation increases over any five-year period are also

likely to see less job reallocation and falling rates of establishment entry and exit. To

match the level of aggregation of the BDS statistics, we proceed in two ways. Our baseline

measure of misallocation are at the 6-digit NAICS level; we aggregate those estimates to

the 4-digit level using a Cobb-Douglas aggregator as in equation (1). We also estimate the

model directly at the 4-digit NAICS level (and discuss these misallocation estimates further

in section 5). Misallocation measures tend to be inversely correlated with measures of
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Table 4: Five-Year Changes in Misallocation and Business Dynamism

Dependent Variable Job Reallocation Rate Entry Rate Exit Rate

(1) (2) (3) (4) (5) (6)

Industry Misallocation –0.3596 –0.1604 –0.0915
(4-digit NAICS) (0.1675) (0.0806) (0.0648)

Industry Misallocation –0.4616 –0.3057 0.0248
(6-digit NAICS) (0.3171) (0.1287) (0.1054)

Observations 450 450 450 450 450 450
R-squared 0.2667 0.2619 0.1681 0.1713 0.3483 0.3445

Note: The dependent variables are drawn from the 2018 vintage of the Business Dynamics
Statistics. The measures of misallocation are constructed using data from the Annual Survey of
Manufactures from the U.S. Census, and from the National Compensation Survey from the U.S.
Bureau of Labor Statistics. Each row shows the results of a different estimation: estimates in the
first row correspond to a definition of the industry at the 4-digit NAICS level; estimates for the
second row are constructed at the 6-digit NAICS level and then aggregated to the 4-digit level
to map to the Business Dynamics Statistics.

business dynamism, with stronger correlations when both BDS statistics and misallocation

are measured at the 4-digit NAICS level.

5 Robustness

In this section, we argue that different trends in misallocation persist even when we in-

corporate additional modifications to the model and the data. We restrict the model and

explore the possibility that all changes in profits are driven by markups; we generalize

the model to allow markups to vary across establishments in an industry; and, we explore

changes to baseline samples, industry definitions, and estimation assumptions. We end

with a discussion of value added and gross output measures of misallocation. We highlight

the challenges in estimating the gross-output version of model and provide estimates from

three complementary approaches. The resulting trends in misallocation are qualitatively

similar to our baseline results across a variety of modeling assumptions and estimation

approaches. Although different parameter estimates lead to different point estimates for

the growth in misallocation, the stark qualitative differences between our model and the

Hsieh-Klenow model remain throughout.
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Model Parametrization

In our first robustness exercise, we emphasize the need for time-varying model parameters

for capturing the evolution of the profit shares. While our estimates match the rising profit

shares through a decline in returns to scale, we consider an alternative parametrization:

we impose constant returns to scale, and calculate hypothetical markups that account for

all the industry and time variation in profit shares. In panel A of table 5, we show that

matching industry profits through markups alone also does away with the increasing trend

in misallocation from the Hsieh-Klenow model. By this alternative calculation, misalloca-

tion between 1982 and 2007 is virtually unchanged, increasing by 3%. By contrast, the

baseline misallocation from the Hsieh-Klenow model increased 29% over the same period.

We view the elimination of this upward trend in misallocation as evidence that accounting

for changing industry profits is of first-order importance for measuring misallocation.

In our second robustness exercise, we allow establishments to charge different markups

within an industry. Formally, we follow Atkeson and Burstein (2008) in assuming that es-

tablishments sell their output in oligopolistically competitive markets instead of monopo-

listically competitive ones. In this setting, an establishment is aware that its choice of how

much to produce affects both its own price and also the price level of the whole industry.

Larger establishments exert a larger impact on the industry price level and this influence

is reflected in larger markups. This establishment-specific markup depends on the elastic-

ity of substitution σi, which is common to all industries in the Hsieh-Klenow model and

varies across industries in our model. We present full details of the model in appendix

B. One key challenge in this extension is to solve for the establishment-specific markup in

the counterfactual where we eliminate distortions. This problem is akin to a contraction

mapping, and we solve it by iterating on an initial guess. A second challenge is one of

endogeneity: large firms do not take the industry price index as a given when choosing

their price and output. To deal with this challenge we drop the 5% largest establishments

by industry market share when estimating the parameters of equation (22); we then bring

those establishments back into the sample when quantifying misallocation.19

Panel A of table 5 shows that the additional generalization to markups that vary within

the industry leaves trends in misallocation essentially unchanged. Relative to the baseline

29% increase and the 13% decline, allowing markups to vary across establishments leads

to a 28% increase and an 15% decline, respectively, in the Hsieh-Klenow model and in

our own. While the trends in misallocation remain unchanged, the levels of misallocation

19The choice to drop the largest establishments in estimation is consistent with quantitative findings by
di Giovanni and Levchenko (2012) and Gaubert and Itskhoki (2021) that only the very largest couple of
firms set a markup meaningfully different from the mononopolistic-competition benchmark in these models.
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Table 5: U.S. Manufacturing Misallocation in 2007 Relative to 1982, Robustness

Panel A: Baseline Estimates

Hsieh-Klenow Model Our Model

Baseline 0.29 -0.13

Model Change:
0.03

impose constant returns to scale with im-
plicit markups to match profit shares

Model Change:
0.28 -0.15

allow markups to vary across establish-
ments in an industry

Sample Change:
0.27 -0.09

use Census of Manufactures instead of
Annual Survey of Manufactures

Panel B: Alternate Estimates

Hsieh-Klenow Model Our Model

Estimation Change:
0.22 0.09

estimate labor share of value added using
Ackerberg et al (2015) instead of FOC

Estimation Change:
0.26 -0.32

define industries more broadly as NAICS
4-digit instead of NAICS 6-digit

Estimation Change:
0.18 -0.02

use ten-year panels instead of five-year
panels and compare 2007 to 1987

decline with heterogeneous markups within the industry. The decline is more notable in

our model, with misallocation some 10% lower per year (e.g., from 104% to 96% in 2007),

while the level in the Hsieh-Klenow model declines about 3% (e.g., 83% to 81% in 2007).

In a third robustness exercise, also reported in panel A, we argue that the different pat-

terns of misallocation are robust to accounting for sample selection in the Annual Survey of
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Manufactures. The survey covers all large establishments and a random sample of smaller

ones. Our baseline estimates of misallocation account for this sample selection by weight-

ing establishments by their Census-provided sampling weights in calculating industry and

aggregate misallocation. For this exercise, we construct the measure of misallocation using

the full Census of Manufactures in 1982 and 2007, two of the years for which we have such

data available. At a 27% increase and a 9% decline, the results of this extension replicate

the baseline patterns.

Model Estimation

We next consider alternative ways, and sets of assumptions, for estimating markups and

returns to scale, and argue that introducing industry and time variation in these parame-

ters continues to remove the sharp increase in misallocation from the Hsieh-Klenow model.

First, instead of calculating the labor share of value added βLi directly as the share of la-

bor expenditures, we estimate βLi in a control-function procedure alongside the two other

elasticities. Second, we estimate markups and returns to scale for more broadly defined

industries. Third, we lengthen the time frame of the estimation, using ten-year panels

instead of five-year panels of data to estimate markups and returns to scale.

While our baseline estimates directly measure the labor share as the ratio of labor costs

to value added, at the top of panel B we instead estimate the labor share as a revenue

elasticity using the Ackerberg et al. (2015) correction to the Levinsohn and Petrin (2003)

control-function procedure. To estimate this labor elasticity, we need additional assump-

tions that justify the use of intermediate inputs as proxies for productivity. One possibil-

ity is that some unobserved component of productivity is realized after an establishment

chooses its labor and before it chooses its intermediate inputs. Hence, we now have to

assume that establishments choose the labor they hire before they choose their interme-

diate inputs, and that unobserved productivity is realized before the intermediate-input

choice. Our estimates of this labor elasticity suggest an 11% decline in labor’s share of

value added, compared to our direct calculation of a 25% decline. With a smaller decline

of the labor share, we also find a smaller reduction in returns to scale over time. Ulti-

mately, this more modest change in returns to scale over time leads to a smaller departure

from the Hsieh-Klenow model’s trend in misallocation; these alternate estimates imply a

9% increase in misallocation, a bit less than half the increase in the Hsieh-Klenow model.

We next estimate markups and returns to scale for more broadly-defined industries,

and find that the divergent patterns of misallocation are amplified. Specifically, we use the

NAICS-4 industry code instead of the more detailed NAICS-6. For instance, an industry

now corresponds to “Dairy Product” instead of “Ice Cream and Frozen Dessert.” The sec-
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ond entry in panel B shows that while misallocation in the Hsieh-Klenow model increases

a bit over of 20%, misallocation in our model falls 32%, more than twice our baseline

decline. This larger decline reflects an interaction of two forces. First, our measure of

misallocation focuses on within-industry reallocation of resources. When we broaden the

industry definition, we implicitly allow resources to be allocated across the NAICS-6 in-

dustries that comprise a NAICS-4. Second, returns to scale determine how large an estab-

lishment grows as a share of the industry when its distortions are removed. The larger

are the returns to scale, the greater is the share of industry revenue generated by the most

productive establishment. The interaction of larger industries and the reduction in returns

to scale over time amplifies the decline in misallocation relative to our baseline results.

We then use ten-year instead of five-year panels to estimate the model parameters; this

procedure attenuates the differences in parameter values across time and hence reduces

the differences in misallocation trends between the two models. Under these parameter

estimates, our model suggests that misallocation decreased 2% between 1987 and 2007

while the Hsieh-Klenow model implies an increase of 18%. We contextualize these esti-

mates by reference to table 2, panel A, in which we document a continuous decline in

returns to scale over the same period. By pooling the last decade of data in this exercise,

our estimate of the decline in returns to scale is smaller than when we compare returns to

scale only using the first five and the last five years of the sample. Nonetheless, even this

smoothing of parameter estimates preserves the divergent trends in misallocation.

Gross Output Alternative

While we take as our baseline a model where establishments combine capital and labor to

produce value added, we also provide evidence of divergent patterns of misallocation in

models of gross output. The value-added baseline allows us to estimate returns to scale

and misallocation in a model-consistent manner. The drawback to the value-added speci-

fication is that the implied measures of productivity for value added and for gross output

are identical only under specific modeling assumptions.20 To draw attention more broadly

to the importance of returns to scale and markups in the measurement of misallocation,

we therefore extend our analysis to gross-output production functions.

We face two key impediments to estimating a gross-output version of our model. For

one, control-function approaches are unable to identify returns to scale in gross-output

production functions, as highlighted by Ackerberg et al. (2015) and Gandhi et al. (2020).

20Namely, the core estimating equation in terms of value added (7) can also be derived from a gross-
output production function that is Leontief in materials whose price is proportional to the price of output, as
discussed, for instance, in Ackerberg et al. (2015).
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Table 6: U.S. Manufacturing Misallocation in 2007 Relative to 1982
Gross Output versus Value Added

Panel A: Misallocation in 2007 Relative to 1982

Hsieh-Klenow Model Our Model

Value Added Baseline 0.29 -0.13

Gross Output Alternatives
1. estimate labor and materials elastici-
ties from FOCs and the rest using GMM

0.11 0.00

2. rescale value-added parameters fol-
lowing Basu & Fernald (2002)

0.12 -0.03

3. impose constant returns to scale on
the estimation of all elasticities

0.10 0.05

Panel B: Returns to Scale Markups

1982 2007 1982 2007

Value Added Baseline 1.23 0.96 1.46 1.48

Gross Output Alternatives
1. estimate labor and materials elastici-
ties from FOCs and the rest using GMM

1.20 1.14 1.29 1.35

2. rescale value-added parameters fol-
lowing Basu & Fernald (2002)

1.04 0.94 1.15 1.17

3. impose constant returns to scale on
the estimation of all elasticities

1.00 1.00 1.10 1.22

The challenge to estimation is that a freely-chosen input (e.g., materials) cannot simul-

taneously be used both to proxy for productivity through a control function and also to

estimate the revenue elasticity with respect to itself. Moreover, this conceptual challenge

is compounded by the data limitation that we observe only expenditures on materials and

not the physical quantity chosen of materials. This data limitation creates the tension that
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we have to use the same data object both to estimate the expenditure share on materials

and also to apply as the physical measure of the input.

In view of these estimation challenges, we present three complementary approaches

to estimating the gross-output version of the model; while none of the three can simul-

taneously overcome all the measurement challenges highlighted in the literature, each

approach draws on a different source of identification. First, we extend the estimating

equation (22) to include an additional revenue elasticity βMi
. We estimate this elasticity

using the expenditures on intermediate inputs as a share of gross output—an object we

calculate directly in the data—and we then estimate the capital and output elasticities

as before. Second, we re-scale the parameters from the value-added model to construct

gross-output parameters following Basu and Fernald (2002). Third, we impose constant

returns to scale when we estimate the production function and thus assign all variation in

profits to markups across industries and time.

The results in table 6 reinforce our baseline findings: estimating returns to scale and

markups undoes the sharp rise in misallocation from the baseline Hsieh-Klenow model.

Across all specifications, the change in misallocation is smaller for the gross-output model

than for the value-added model, as per panel A. The increase in misallocation for the

Hsieh-Klenow model averages about 11%. Misallocation in our model is either unchanged

or falls by 3% when we estimate both returns to scale and markups; when we attribute

all changes to the markup and impose constant returns to scale, we find an increase of

5% in misallocation. Behind these estimates of changing misallocation are the estimates

of reductions in returns to scale and rises in markups in panel B.

6 Conclusion

We argue in this paper that accounting for industry and time variation in markups and

returns to scale leads to a measure of misallocation in U.S. manufacturing that is decreas-

ing over time; this result stands in contrast to the increasing measure of misallocation

under the widely-applied assumptions of a common markup and constant returns to scale,

as in the Hsieh-Klenow model. To quantify these differences, we use five-year panels of

restricted U.S. Census microdata to estimate markups and returns to scale across manu-

facturing industries. We find that industries differ meaningfully in these parameters at a

given point in time, and that the average returns to scale in U.S. manufacturing declined

between 1982 and 2007.

We decompose the differences in misallocation between the two models, and identify

the decline in returns to scale as the primary driver of the divergent trends in misallocation.

The Hsieh-Klenow measure on average understates our measure of misallocation. The
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assumption of constant returns to scale is a better fit for the data in 2007 than it is for

1982. Consequently, as the U.S. manufacturing sector began to reflect more closely the

assumption of constant returns, the discrepancy in measuring misallocation declined. As

this discrepancy declined, the Hsieh-Klenow measure of misallocation asymptoted toward

our measure from below and hence drove the upward trend in misallocation.

We formalize the source of these differences in misallocation and show that, by ig-

noring the variation in markups and returns to scale, the Hsieh-Klenow model measures

productivity in a way that conflates productivity and distortions. These spurious correla-

tions lead us to incorrectly infer the extent to which the most productive establishments

bear the most burdensome distortions, and hence to an incorrect measure of misallocation.

We think the patterns we identify in markups and returns to scale, and the discrepancies

we highlight in measuring productivity, could be of broader interest. Outside the literature

on misallocation, the measurement of establishment-level productivity is a key input in

other attempts to trace the impacts of policies and shocks from affected establishments to

aggregate outcomes.
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Appendices

A Model Summary

Aggregation

We assume that the manufacturing sector is characterized by a representative establish-

ment selling its output Y in a perfectly competitive market. This firm aggregates the output

Yi of I different industries using a Cobb-Douglas production technology with elasticities

θi:

Y =
I∏
i=1

Y θi
i , with

I∑
i=1

θi = 1. (A.1)

Cost minimization by this aggregating firm implies that θi is also each industry’s share of

aggregate expenditure

PiYi = θiPY, (A.2)

where Pi is the price of an industry composite good, and P is the price of the final good

P =
I∏
i=1

(
Pi
θi

)θi
. (A.3)

An industry aggregating firm produces Yi from the output of Ni differentiated establish-

ments via a constant-elasticity-of-substitution (CES) technology with elasticity σi

Yi =

 Ni∑
e=1

Y
σi−1

σi
ie


σi
σi−1

. (A.4)

Cost minimization by the industry aggregating firm implies a standard CES price index Pi:

Pi =

 Ni∑
e=1

(
1

Pie

)σi−1

 −1
σi−1

. (A.5)
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Establishment Optimization

Each establishment in the industry produces value-added output Yie by combining its TFP

Aie, capital Kie and labor Lie in a Cobb-Douglas production function

Yie = AieK
αKi
ie L

αLi
ie , (A.6)

where the industry level returns to scale αi are the sum of the output elasticities αKi and

αLi. The establishment maximizes profits by taking as given the prices R and w from

perfectly competitive input markets. However, the effective cost of an input varies across

establishments, with the τKie and τLie capturing these input-specific distortions for capital

and labor, respectively

πie = PieYie − (1 + τLie)wLie − (1 + τKie)RKie. (A.7)

By internalizing the demand for its variety, the establishment charges a price that is a

constant markup over its marginal cost. Note that the marginal cost under variable RTS

depends on the scale of production:

Pie = ΩPi

[
(1 + τKie)

αKi (1 + τLie)
αLi

Aie

] 1
αi+σi(1−αi)

(A.8)

where ΩPi =
(
P σ
i Yi

) 1−αi
αi+σi(1−αi)

[(
σi

σi − 1

)αi ( R

αKi

)αKi ( w

αLi

)αLi] 1
αi+σi(1−αi)

Pie =
σi

σi − 1

[(
R

αKi

)αKi ( w

αLi

)αLi] 1
αi (

Yie

) 1−αi
αi

[
(1 + τKie)

αKi (1 + τLie)
αLi

Aie

] 1
αi

.

Within the confines of this model, there is a natural restriction on the returns to scale

parameter. As in Basu and Fernald (1997), standard cost-minimization requires that the

RTS parameter αi is (weakly) less than the markup σi/(σi−1). The returns to scale and the

markup shape the price elasticities of supply and demand, respectively. The price elasticity

of supply is increasing in the RTS parameter αi: when RTS are sufficiently large, the supply

curve becomes downward sloping. The restriction that αi is smaller than the markup

guarantees that a downward-sloping supply curve is not steeper than a downward-sloping

demand curve. This restriction ensures that the willingness-to-pay reflected in the demand

curve exceeds the cost of production embodied by the supply curve when establishments

are deciding whether to produce. A rearrangement of this inequality guarantees that the

often-recurring term [αi + σi(1− αi)] is positive.
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An establishment facing larger distortions uses less capital and labor.

Kie ∝

[
Aσi−1
ie

(1 + τKie)
[αi+σi(1−αi)]+αKi (σi−1)(1 + τLie)

αLi (σ−1)

] 1
αi+σ(1−αi)

(A.9)

Lie ∝

[
Aσi−1
ie

(1 + τKie)
αKi (σi−1)(1 + τLie)

[αi+σ(1−αi)]+αLi (σi−1)

] 1
αi+σ(1−αi)

. (A.10)

Moreover, measured in terms of either physical output or the establishment’s revenue share

in the industry, a more distorted establishment is also smaller in size.

PieYie
PiYi

=

Aie


1

1 + τKie
1

1 + τK,i


αKi


1

1 + τLie
1

1 + τL,i


αLi


1
σi
σi−1−αi

Ni∑
e=1

Aie


1

1 + τKie
1

1 + τK,i


αKi


1

1 + τLie
1

1 + τL,i


αLi


1
σi
σi−1−αi

. (A.11)

Marginal Revenue Products and Market Clearing

Distortions affect establishment choices by changing the marginal revenue gained from an

additional unit of an input (e.g. MRPKie for capital Kie). In equilibrium, the marginal

revenue product of an additional hired input equals the effective cost to the establishment

of hiring the input. If an establishment faces barriers that make acquiring capital more

expensive, then (1 + τKie) is high, and the establishment will only hire an additional unit

of capital if its MRPKie exceeds the cost (1 + τKie)R. The same reasoning holds for all

variable inputs in production.

MRPKie ,MPKie × Pie ×
σi − 1

σi
= αKi

Yie
Kie

Pie
σi − 1

σi
= (1 + τKie)R (A.12)

MRPLie ,MPLie × Pie ×
σi − 1

σi
= αLi

Yie
Lie

Pie
σi − 1

σi
= (1 + τLie)w. (A.13)

To understand the impact of establishment-level distortions for the productivity of the

industry as a whole, we need to aggregate the establishment choices. Combining input-

market-clearing conditions with establishment input choices, we can show that each indus-
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try uses capital and labor in proportion to the industry’s share of the national economy θi,

to the industry’s input elasticity αXi for a given factor X, and in inverse proportion to that

factor’s average marginal revenue products across the industry’s establishments MRPXi.

Ki = K
αKiθi

1
MRPKi

I∑
i′=1

αKi′θi′
1

MRPKi′

(A.14)

Li = L
αLiθi

1
MRPLi

I∑
i′=1

αLi′θi′
1

MRPLi′

. (A.15)

The average marginal revenue products are weighted by establishment size. In the absence

of distortions, or if all establishments faced the same distortion, MRPXie would be equal

across establishments and hence equal to the industry MRPXi. We revisit this point below

when we define a counterfactual allocation of resources in which all establishments are

equally distorted.

1

MRPKi

=

Ni∑
f=1

1

MRPKie

PieYie
PiYi

=
1

R

Ni∑
f=1

1

(1 + τKie)

PieYie
PiYi

(A.16)

1

MRPLi
=

Ni∑
f=1

1

MRPLie

PieYie
PiYi

=
1

w

Ni∑
f=1

1

(1 + τLie)

PieYie
PiYi

. (A.17)

Much like the above definitions of average MRPX in the industry, we simplify the

notation for the average distortion in an industry by defining

(1 + τXi) =

 Ni∑
e=1

PieYie
PiYi

1

1 + τXie

−1

for X ∈ {K,L}.

Toward a Measure of Industry Productivity

Industry output can now be expressed as

Yi = AiK
αKi
i L

αLi
i , (A.18)

where Ai is the total factor productivity TFPi of the industry. In thinking about how

distortions affect industry productivity, we introduce notation based on Foster et al. (2008)

and Hsieh and Klenow (2009) that distinguishes the productivity for producing a quantity
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of physical goods, Aie, from the productivity for generating revenue, TFPRie.

TFPRie , PieAie =
PieYie

K
αKi
ie L

αLi
ie

. (A.19)

This distinction is helpful since two establishments with the same physical productivity

Aie can have different revenue productivities TFPRie if they face different distortions. In

other words, TFPR can help summarize the impact of distortions on an establishment:

TFPRie =

(
σi

σi − 1

)αi (
PieYie

)1−αi
[
MRPKie

αKi

]αKi [MRPLie
αLi

]αLi
(A.20)

TFPRie ∝
[
(1 + τKie)

αKi (1 + τLie)
αLiA

(σi−1)(1−βi)
ie

] 1
αi+σ(1−αi) . (A.21)

Revenue productivity increases in the level of distortions, as the establishment’s input

bundle has to compensate for a large effective cost of hiring the inputs.

We can define an industry revenue productivity following the establishment definition:

TFPRi , PiAi =

(
σ

σ − 1

)βi (
PiYi

)1−βi
[
MRPKi

αKi

]αKi [
MRPLi
αLi

]αLi
. (A.22)

This formulation of industry revenue productivity allows us to write industry TFPi as

the CES aggregate of establishment physical productivity Aie, weighted by the difference

between industry and establishment revenue productivity TFPRi/TFPRie.

TFPi = PiAi
1

Pi
= TFPRi

1

Pi
=

 Mi∑
e=1

(
Aie

TFPRi

TFPRie

)σ−1

 1
σ−1

. (A.23)

The weight captures the establishment’s size as well as the deviations of its marginal rev-

enue products from their respective industry averages:

TFPRi

TFPRie

=

(
PiYi
PieYie

)1−αi [
MRPKi

MRPKie

]αKi [MRPLi
MRPLie

]αLi
(A.24)

TFPRi

TFPRie

=
(
sie

)αi−1
(

1 + τK,i
1 + τKie

)αKi
(

1 + τL,i
1 + τLie

)αLi

. (A.25)

Misallocation

More distorted establishments have smaller weights in industry productivity. Consequently,

the correlation of productivity and distortion is important for measuring gains from equal-
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izing the distortions faced by different establishments within the industry. If more pro-

ductive establishments are also more distorted, then equalizing distortions would give

larger weights to the more productive establishments in the counterfactual. This tilting of

weights toward more productive establishments would translate to large TFP gains from

reallocating inputs.

More formally, if all establishments within an industry face the same distortions, so

that τ = τ , then the establishment weights for calculating industry TFPi simplify in the

following manner:

TFPRi

TFPRie

∣∣∣∣
τ=τ

=
(
sie|τ=τ

)αi−1

=


[
Aie

] 1
σi
σi−1−αi

Ni∑
e=1

[
Aie

] 1
σi
σi−1−αi


αi−1

. (A.26)

Note that under constant returns to scale (αi = 1) TFPRie is identical across all establish-

ments. This equality is at the center of Hsieh and Klenow (2009) intuition: “A key result

we exploit is that revenue productivity... should be equated across firms in the absence of

distortions. To the extent revenue productivity differs across firms, we can use it to recover

a measure of firm-level distortions” (1404). Note, however, that if returns to scale in an

industry are not constant, then revenue productivity can vary across undistorted estab-

lishments. As a result, there is not a direct mapping between the variance of TFPR and

the misallocation within industry. To calculate the gains from eliminating distortions, the

econometrician has to calculate the counterfactual weight for each establishment.

For every industry i, we then define misallocation as Φi, the net gain to industry TFP

from equalizing distortions across establishments within the industry:

Φi =
TFPi

∣∣
τ=τ̄

TFPi
=

 Ni∑
e=1

(
Aie

TFPRi

TFPRie

∣∣∣∣
τ=τ̄

)σi−1
 1
σi−1

 Ni∑
e=1

(
Aie

TFPRi

TFPRie

)σi−1

 1
σi−1

. (A.27)

The misallocation for all of US manufacturing in a given year is then

Φ =
∏
i∈I

Φθi
i , (A.28)

where θi is industry i’s revenue share in the manufacturing sector.
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B Heterogeneous Markups within Industry

In this appendix, we generalize our model to allow markups to vary across establishments

in an industry. We introduce these heterogeneous markups by replacing monopolistic

competition in output markets with oligopolistic competition, in the style of Atkeson and

Burstein (2008). In short, we allow establishments to internalize their impact on the

industry demand, leading them to change their price-setting behavior, with larger estab-

lishments now charging higher markups.

Previously, establishments internalized their own downward-sloping demand curves:

Pie = PiYiY
1−σi
σi

i Y
−1
σi
ie . (B.1)

Now they also internalize the demand for the industry aggregate, so we can write an

individual establishment’s demand curve as

Pie = θiPY Y
1−σi
σi

i Y
−1
σi
ie . (B.2)

Profit maximization on the part of these oligopolistic establishments leads to an updated

expression for the equilibrium price, which is still a markup over marginal cost:

Pie =
ε(sie)

ε(sie)− 1

[(
R

αKi

)αKi ( w

αLi

)αLi] 1
αi (

Yie

) 1−αi
αi

[
(1 + τKie)

αKi (1 + τLie)
αLi

Aie

] 1
αi

. (B.3)

The establishment-specific markup ε(sie)/(ε(sie) − 1) is now based on the elasticity ε(sie),

whose inverse is defined as the weighted average of inverses of the industry CES elasticity

of substitution σi and of the aggregate economy’s Cobb-Douglas elasticity 1.

1

ε(sie)
=

1

σi
(1− sie) + sie (B.4)

ε(sie)

ε(sie)− 1
=

σi
σi − 1

1

1− sie
. (B.5)

Larger establishments charge higher markups:

∂ ε(sie)
ε(sie)−1

∂sie
=

[
1

ε(sie)− 1
− ε(sie)

(ε(sie)− 1)2

]
∂ε(sie)

∂sie
=
σi − 1

σi

[
ε(sie)

ε(sie)− 1

]2

> 0. (B.6)

Working through the model, we show that the establishment size now depends on the

54



establishment markup:

sie =
PieYie
PiYi

=

[(
ε(sie)

ε(sie)− 1

)−αi Aie
(1 + τKie)

αKi (1 + τLie)
αLi

] 1
σi
σi−1−αi

Ni∑
i=1

[(
ε(sie)

ε(sie)− 1

)−αi Aie
(1 + τKie)

αKi (1 + τLie)
αLi

] 1
σi
σi−1−αi

. (B.7)

To calculate misallocation in this generalized model, we derive the scaling factors with

and without distortions. The scaling factors defined by the relative revenue productivity

now depend on M̃RPX, the average marginal revenue products that are scaled by the

establishment-specific markups:

TFPRi

TFPRie

=

(
PiYi
PieYie

)1−β
 M̃RPKi

MRPKie
ε(sie)

ε(sie)− 1


αKi
 M̃RPLi

MRPLie
ε(sie)

ε(sie)− 1


αLi

(B.8)

TFPRi

TFPRie

=

(
PiYi
PieYie

)1−β


Kie

PieYie
Ni∑
e=1

PieYie
PiYi

Kie

PieYie


αKi


Lie
PieYie

Ni∑
e=1

PieYie
PiYi

Lie
PieYie


αLi

, (B.9)

where the last expression above is now entirely in terms of data, making it straightforward

to implement. In the absence of distortions, we can write the scaling factor as a function

solely of the relative size in the absence of distortions sie|τ=τ̄ :

TFPRi

TFPRie

∣∣∣∣
τ=τ̄

=
(
sie|τ=τ̄

)αi−1


(

1− sie|τ=τ̄

)
Ni∑
e=1

sie|τ=τ̄

(
1− sie|τ=τ̄

)

αi

(B.10)

where sie|τ=τ̄ =

[
(1− sie|τ=τ̄ )

αiAie

] 1
σi
σi−1−αi

Ni∑
i=1

[
(1− sie|τ=τ̄ )

αiAie

] 1
σi
σi−1−αi

. (B.11)
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C Returns to Scale, Markups, and Concentration

In this appendix we show that—for this class of monopolistically-competitive models—

declines in returns to scale and increases in markups have observationally-equivalent im-

plications for the variance and concentration of market shares. This discussion is helpful

to relate the modeling and measurement within this paper (and this class of models) to

the findings in the literature that larger firms have been capturing larger market shares

over time (e.g., Autor et al. (2020), De Loecker et al. (2020)).

For expositional purposes, we present here the analytical results for an undistorted

economy. Within the model, we can express an establishment’s revenue (market) share sie
as a function of productivity Aie and the difference between the industry markup µi and

the industry returns to scale αi:

sie =
PieYie
PiYi

=
(Aie)

1
µi−αi∑

e′∈I

(Aie′)
1

µi−αi

⇐⇒ ln sie =
1

µi − αi
lnAie − ln

(∑
e′∈I

(Aie′)
1

µi−αi

)
.

The gap between the markup µi and the returns-to-scale parameter αi determines ampli-

fication of an establishment’s productivity into its market share. This gap between the

markup and the returns to scale is directly informed by the industry’s economic profits Πi:

Πi

PiYi
= 1− αi

µi
.

In this class of models, the extent of profitability translates productivity differences into

market shares. The smaller the profit share (i.e., the closer are the markup and returns

to scale to each other), the “more competitive” is the industry, in the sense that the most

productive firms have a greater market share. A rise in profits would push in the opposite

direction: as the gap between the markup µ and the returns to scale α increases, there are

fewer competitive pressures and the same productivity advantage leads to a proportionally

smaller market share.

A decline in returns to scale increases profits and lowers the variance of market shares:

Var(ln sie) =

(
1

µi − αi

)2

Var(lnAie) (C.1)

∂Var(ln sie)
∂(−αi)

=
∂Var(ln sie)

∂µi
< 0

Note, however, that the same implication holds for an increase in the markup. A rise in

the markup would drive up industry profits and lower variance in exactly the same way.
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These patterns are counterfactual for the aggregate economy since both variance and

concentration—measured below by the Herfindahl-Hirschman Index (HHI)—have increased

over time. Autor et al. (2020), for instance, is a great example of how within-industry vari-
ation in either returns to scale or in markups can be used to explain rising concentration.

Their 2017 NBER working paper presents a model of monopolistic competition (where

all firms charge the same markup, much like in our paper) so that differences in factor

shares are driven by differences in returns to scale across firms. The published 2020 paper

switches the emphasis: returns to scale are the same across firms while markups now vary

across firms. Yet, even as they switched how they model the heterogeneity (without, to

our knowledge, providing evidence for one model over the other), the reported patterns

of concentration and factor shares remain unchanged.

Having highlighted the theoretical impact of returns to scale and of markups on the

dispersion in establishment size in the model, we show nonetheless that these theoretical

predictions hold in a relative sense across industries. In the table 7 we regress five-year

changes in variance/concentration on the five-year change in the difference between the

markup and returns to scale (columns (1) and (3)), and on the markup and the returns to

scale separately (columns (2) and (4)).

As predicted by the model’s variance expression above, these relative coefficients from

columns (1) and (3) show that a larger gap between markups and returns to scale—which

reflects rising economic profits—is negatively correlated with changes in the variance and

concentration of market shares. Columns (2) and (4) shows that higher markups and

lower returns to scale also individually depress the variance and concentration measures.

Table 7: Five-Year Changes in Industry Market Concentration

Dependent Variable Var of Log Revenue Shares HHI of Revenue Shares

(1) (2) (3) (4)

Markup (µi) – Returns to Scale (αi) –0.0389 –0.0465
(0.0109) (0.0064)

Markup (µi) –0.3337 –0.1220
(0.0588) (0.0292)

Returns to Scale (αi) 0.2672 0.1358
(0.0506) (0.0242)

Observations 2600 2600 2600 2600
R-squared 0.6649 0.6721 0.9079 0.9071
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D Demand Shocks and Misallocation

Our measure of misallocation is based on a counterfactual in which we change distortions

but keep fundamentals (e.g., tastes/demand, productivity, etc.) unchanged. We show that

our residual-based measure of establishment productivity Âie would conflate productivity

Aie and demand in an augmented model where we allow for establishment-specific taste

parameters ψie. We then show that we would correctly calculate misallocation even when

we cannot separately measure productivity and tastes in the residual Âie. In short, the

measure of misallocation requires us to capture this combined object of productivity and

demand; it does not require us to separate the two.

If we allowed for establishment-specific taste parameters, our residual Âie would be

a product of the establishment productivity and the taste parameter. We show this by

modifying the industry CES aggregator from equation (2) to include establishment-specific

taste shifters ψie:

Yi =

 Ni∑
e=1

(ψieYie)
σi−1

σi


σi
σi−1

. (D.1)

In this augmented model, the demand for an establishment’s revenue depends on the

consumer’s tastes for the variety in question:

PieYie = PiY
1
σi
i (ψieYie)

σi−1

σi (D.2)

Following the standard process for backing out the residual Âie, we now back out a term

that conflates productivity Aie and the taste shifter ψie:

Âie =
(PieYie)

σi
σi−1

K
αKi
ie L

αLi
ie

= κiψieAie (D.3)

Since productivity and taste parameters always enter multiplicatively in the expres-

sion for misallocation, we would calculate misallocation correctly even though we could

not separately measure productivity and demand shocks. We note first that the relative
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revenue productivity is unchanged from its expression in the baseline model:

TFPRi

TFPRie

=

(
PiYi
PieYie

)1−β


(

Kie

PieYie

)
(

Kie

PieYie

)

−αKi


(

Lie
PieYie

)
(

Lie
PieYie

)

−αLi

. (D.4)

When we reallocate inputs to equalize distortions across establishments, the relative rev-

enue productivity now depends on the product ψitAie:

TFPRi

TFPRie

∣∣∣∣
τ=τ̄

=


Ni∑
e=1

(ψieAie)
1

σi
σi−1−β

(ψieAie)
1

σi
σi−1−β


1−β

(D.5)

Putting these pieces together, we show that we can calculate misallocation using the resid-

ual Âie even when we cannot separately measure productivity and demand shocks:

Φi =
TFPi|τ=τ

TFPi
=

 Ni∑
e=1

(
(ψieAie)

TFPRi

TFPRie

∣∣∣∣
τ=τ

)σ−1
 1
σ−1

 Ni∑
e=1

(
(ψieAie)

TFPRi

TFPRie

)σ−1

 1
σ−1

. (D.6)
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E Discrepancies in Establishment-Level Productivity

Incorrect measures of misallocation, both from imposing constant returns to scale and from

imposing a common markup, are rooted in spurious correlations between productivity and

the distortions that establishments face. As we did in figure 5, we document these spurious

correlations in turn, focusing first on returns to scale and then on markups.

In panel A of table 8 we show that inappropriately imposing constant returns to scale

leads to measures of productivity that conflate productivity and distortion. The regressions

in panel A control for the productivity estimated when returns to scale vary, and compare

the constant-returns productivity of establishments with different input bundles. This con-

ditioning allows us to compare establishments that have the same productivity under our

model, but that face different distortions, and hence have different input bundles. The key

regression coefficients are conditional correlations of constant-returns productivity and in-

put bundles, shown separately for industries with decreasing and increasing returns. As

suggested by equation (16), these correlations should be opposite in sign.

Columns 2 and 3 support model predictions that imposing constant returns to scale on

industries where returns to scale are not constant leads to predictable spurious correlations

between productivity and distortions. Column 2 emphasizes that imposing constant re-

turns in place of decreasing returns leads us to perceive more distorted establishments (i.e.,

those with smaller input bundles) as more productive. Specifically, a 1-standard-deviation

decrease in the log input bundle leads to a measure of productivity that is 0.32 standard

deviations larger under the constant returns to scale model. Column 3 emphasizes the op-

posite pattern for increasing-returns industries. Following a 1-standard-deviation decrease

in the log input bundle, productivity is 0.45 standard deviations smaller under constant

returns to scale. In this case, imposing constant returns on industries where returns to

scale are increasing leads us to perceive more distorted establishments as less productive.

In panel B of table 8, we show that understating the markup in an industry leads us to

perceive more distorted establishments as more produtive, while overstating the markup

leads us to perceive more distorted establishments as less productive. We document this

pattern through the predictions from equation (18) by linking the mismeasurement of pro-

ductivity to establishment size. In a parallel with panel A, we control for the productivity

measured under the estimated markup, and then compare the common-markup produc-

tivity of establishments that differ in distortions, and hence in their sizes.

Columns 2 and 3 partition the sample by estimated markup size and back the model

predictions. In particular, column 2 suggests that, indeed, understating the markup leads

us to a spurious positive correlation between productivity and distortions: a 1-standard-
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Table 8: Productivity Mismeasurement at the Establishment Level

Panel A: Imposing Constant Returns to Scale

Dependent Variable Normalized Log Productivity (Aie)
(Constant Returns to Scale)

(1) (2) (3)

Normalized Log Input Bundle 0.1460 -0.3238 0.4465
(0.0149) (0.0147) (0.0106)

Normalized Log Productivity (Aie) 0.8241 1.0527 0.7528
(Variable Returns to Scale) (0.0068) (0.0067) (0.0074)

Industry-Year Sample All Decreasing RTS Increasing RTS
Industry×Year Fixed Effects Yes Yes Yes
Observations 292000 126000 166000
R-squared 0.8130 0.9268 0.9338

Panel B: Imposing a Common Markup across Industries

Dependent Variable Normalized Log Productivity (Aie)
(Common Markup)

(1) (2) (3)

Normalized Log Value Added 0.2514 -2.0286 0.5993
(0.0243) (0.0566) (0.0137)

Normalized Log Productivity (Aie) 0.4839 2.3961 0.4678
(Heterogeneous Markups) (0.0155) (0.0436) (0.0104)

Industry-Year Sample All
Understated

Markup
Overstated

Markup
Industry×Year Fixed Effects Yes Yes Yes
Observations 292000 116000 176000
R-squared 0.5630 0.7099 0.9143

Note: Unit of observation is an establishment-year. The time period comprises 1982, 1987,
1992, 1997, 2002, and 2007. Standard errors are clustered at the industry-year level. To
normalize the values within each industry, we demean the variable and divide by its standard
deviation.
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deviation decrease in size (i.e. an increase in distortion) leads us to a 2.03-standard-

deviation increase in common-markup productivity. Column 3 presents the opposite result

for instances where we overstate the markup: a decrease in size leads to a 0.60-standard-

deviation decrease in common-markup productivity.
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F Measurement Error in Bils, Klenow and Ruane (2017)

Bils, Klenow and Ruane (2017), henceforth BKR, highlight the possibility that measure-

ment error could be misinterpreted as misallocation in microdata. They propose a cor-

rection for additive measurement error in establishment revenue R and input bundles I.

Their estimates suggest that measurement error has increased in U.S. Census microdata,

and that accounting for this change in measurement error eliminates the upward trend in

misallocation from a gross-output Hsieh-Klenow model.

In this appendix, we show that deviations from constant returns to scale look like mea-

surement error in the BKR procedure, and that a decline in returns to scale over time looks

like an increase in measurement error. Informally, our argument emphasizes two points.

First, a procedure that does not explicitly account for multiplicative measurement error

will pick up this multiplicative measurement error as additive measurement error. Second,

overlooking deviations from constant returns to scale leads to multiplicative measurement

error in the input bundle. For instance, if the true returns to scale in an industry were αi,

then the input bundle under constant returns to scale Icrts,ie would relate to the true input

bundle Iie, as shown below. As a result, the BKR procedure could interpret deviations from

constant returns to scale as measurement error.

Icrts,ie = I
1−αi
αi

ie︸ ︷︷ ︸
multiplicative measurement error

Iie

Icrts,ie = Iie + [I
1−αi
αi

ie − 1]Iie︸ ︷︷ ︸
additive measurement error

.

Formally, we focus on the key parameter λ in BKR estimating equation [2], reproduced

below. BKR show that λ = 1 if there is no misallocation. Larger deviations from unity

indicate a greater extent of measurement error. The key estimating equation relates the

time-series change in revenue, R, to the change in the input bundle I, the revenue produc-

tivity TFPR, and the product of I and TFPR. Both I and TFPR depend on the assumed

returns to scale. The measure of change ∆ defined as the “growth rate of a plant variable

relative to the mean of its sector.”

∆R̂ = Ψ ·∆Î + Φ · f(lnTFPR) + Ψ(1− λ) ·∆Î · g(lnTFPR).

We derive the below relationship between λcrts, estimated under assumed constant

returns to scale, and true λ, where g(·) is some polynomial. In short, the BKR procedure

correctly captures measurement error under one of two conditions: either λ = 1, so there
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is no measurement error, or αi = 1, so that the assumed constant returns to scale hold in

the data. As a result, if there is any measurement error in the data, the BKR estimates can

conflate measurement error with model misspecification.

λcrts = λ+ (1− λ)[1− γ] where γ =
g
(

lnRie − αi ln Icrts,ie
)

g
(

lnRie − ln Icrts,ie

) .

We show that the mismeasurement of λ varies predictably with returns to scale αi.

Since λ̂crts in BKR takes values between 0.095 and 0.358 for U.S. data, we focus entirely on

the case of λ < 1. In short, if λcrts is closer to 1 than is λ, then we understate measurement

error when we impose constant returns to scale. Indeed, this is the case when returns to

scale are increasing: when αi > 1, then 1 > λcrts > λ, and we understate misallocation.

By contrast, when returns to scale are decreasing, then we overstate misallocation, since

αi < 1 leads to 1 > λ > λcrts.

Consider a setting in which measurement error does not change over time, but returns

to scale decline from increasing to constant; imposing constant returns to scale in this

setting would lead us to infer an increase in measurement error, even though no such

increase has taken place. As detailed in the previous paragraph, overlooking increasing

returns to scale leads us to understate measurement error. As returns to scale decline over

time, our estimate of measurement error asymptotes to its true value from below. In short,

imposing constant returns to scale here would lead us to understate measurement error

early in the period and to see this measurement error grow toward its true value over time.

However, by assumption, true measurement error has not changed; we only see it grow as

the bias from imposing constant returns declines over time.

With the caveat that our estimates of returns to scale are for a value-added world,

while BKR work in a gross-output world, we present the BKR estimates of λcrts and our

estimates of returns to scale αi. By the arguments above, it is possible that a decline in

returns to scale could explain the increase in measurement error over time that BKR find.

If, as a result, there has not been a substantial change in measurement error over time,

then measurement error is less capable of explaining the upward trend in misallocation.

Table 9: U.S. Manufacturing – Division of Value Added

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002 2003-2007

λcrts 0.358 0.336 0.326 0.326 0.192 0.095

αaverage 1.23 1.20 1.20 1.12 1.11 0.96
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