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Abstract

We develop a framework to study optimal transport networks in general equilibrium spatial

models. We embed an optimal transport problem into a general neoclassical environment with

arbitrary many locations arranged on a graph. Goods must be shipped through linked locations

subject to congestion in transport. In addition, resources can be invested to lower trade costs

in any link. The framework nests the neoclassical models used in international trade and allows

for factor mobility. We define the globally optimal transport network as the solution to a social

planner’s problem of simultaneously choosing the allocation, the gross trade flows across the

network, and the investment in each link. If the congestion in transport is strong relative to the

returns to infrastructure investments, the planner’s is a standard convex optimization problem,

guaranteeing convergence of efficient gradient-descent based algorithms. We use the model to

characterize the globally optimal transport network in different spatial equilibrium environments

and to contrast it with sub-optimal networks. We also implement optimal networks when the

planner’s problem is non-convex due to increasing returns to network investments, and contrast

their properties with convex cases.

∗This paper was presented at the Toulouse SED Conference 2016 under the title “Endogenous Transport Net-
works.”



1 Introduction

Trade costs are a ubiquitous force in international trade and economic geography, as they ra-

tionalize spatial distributions prices, real incomes, and trade flows. Some central questions involve

counterfactuals with respect to trade costs. For example, the gains-from-trade counterfactual com-

paring trade and autarky scenarios is a canonical theoretical question, as well as the focus of

quantitative research summarized by Costinot and Rodŕıguez-Clare (2013). The shape and quality

of transport networks within and between countries are important components of trade costs, and

particularly so in developing countries (Limao and Venables, 2001; Atkin and Donaldson, 2015).1

Partly motivated by the observation that every year the world economy invests massive amounts of

resources in transport infrastructure (WorldBank, 2009), recent studies assess the economic impact

of infrastructure investments. These studies include both the ex post empirical analyses of actual

changes in transport technologies or infrastructure, summarized by Donaldson (2015) and Redding

and Turner (2015), and the simulation of changes in trade costs in quantitative spatial setups using

estimated models, as reviewed for example by Redding and Rossi-Hansberg (2016).

A current limitation of this burgeoning body of research is the ability to study optimal transport

networks. What would be the gains from replacing actual, potentially inefficient networks with

the optimal transport network, and how do these gains vary across countries? How does the

optimal transport network interact with the sources of comparative advantages, such as differences

in relative productivity and factor endowments, vis-a-vis natural geographic features? How does the

optimal response of the transport network diffuse local shocks and impact the spatial distribution

of economic activity?

In this paper, we develop a framework to study optimal transport networks in standard general-

equilibrium trade and economic-geography models. We model a general neoclassical environment

with multiple goods and factors in which arbitrary many locations are arranged on a graph. Goods

can only be shipped through connected locations; for example, connected locations may correspond

to bordering locations in the geographical space. Shipping is subject to decreasing returns, the

source of which may be congestion or specific factors in transport technologies.2 In addition,

resources can be invested to increase the capacity of the transport infrastructure in any link (e.g.,

the number of lanes or the quality of the road). The transport network is defined as the set

of capacities across links. The framework nests commonly used neoclassical trade models (e.g.,

the Ricardian, Armington, and factor-endowment models), and it allows for either a fixed spatial

distribution of the primary factors (as in international trade models) or for labor and potentially

other factors to be mobile (as in economic geography models).

Solving for the globally optimal transport network is challenging because of dimensionality

–the space of all networks is large– and because of potentially increasing returns due to the com-

plementarity between network investments and shipping. Our approach deals with both hurdles.

1See and WorldBank (2011) and IADB (2013) for assessments of transport costs in Africa and Latin-America,
respectively.

2For recent evidence on road congestion in the U.S. see Duranton and Turner (2011).
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First, rather than optimizing over the network in the competitive equilibrium, we tackle the plan-

ner’s problem of simultaneously choosing the allocation, the gross trade flows, and the capacity

investments in every link.3 Second, we convexify the social planner’s problem through continuous

infrastructure investments (instead of a binary choice of whether to build or not). Third, to deal

with increasing returns we introduce curvature in the planner’s problem through decreasing returns

in transport activities: the more is shipped between connected locations, the higher is the marginal

cost of shipping an extra unit of any commodity. The welfare theorems hold, so that the planner’s

optimal allocation and gross trade flows given the network capacities correspond to a competitive

equilibrium.

The first main implication of these assumptions is a reduction in dimensionality. Using the first-

order conditions with respect to capacity investments avoids a search in the space of all networks.

Because the investment is continuous, the optimal infrastructure investment between connected

locations i and j is determined as function of goods’ shadow values –the equilibrium prices in the

decentralized allocation– in locations i and j alone. Instead of searching in the space of all networks,

these properties allow us to search in the considerably smaller space of equilibrium prices. The

globally optimal network then results from the combination of the optimization conditions in every

link. The second main implication is convexity: if congestion in transport is strong relative to the

returns to network-capacity investments, the planner’s problem is a standard convex optimization

problem. Therefore, besides being a realistic force, congestion in transport ensures the sufficiency

of the first-order conditions from the planner’s problem and guarantees the convergence of efficient

gradient-descent based algorithms to find the solution.

These properties hold regardless of the number of goods, sectors, and factors, and regardless

of whether labor is fixed or mobile, as long as the model lies within the neoclassical realm. In

the absence of strong enough congestion relative to the returns to network building, the planner’s

problem is not convex and there may be multiple local maxima. We implement these non-convex

cases combining the necessary first-order conditions from the planner’s problem with standard

simulated annealing methods. The ensuing networks in these cases are sparser, and the capacity

distribution is more skewed towards fewer but wider “highways”. In some specific cases, we show

that the optimal network is a tree, so that every pair of locations is connected through only one

route.

In this preliminary version of our paper, we first develop the framework, characterize its key

main properties, and discuss the computational implementation. Then, we illustrate its uses by

computing the optimal transport network in different spatial equilibrium environments. Our ap-

plications start from the simplest case nested within our model, an endowment economy without

labor mobility and only one traded and one non-traded good in a symmetric graph. Then, we

progressively move to more complex cases with randomly located cities, multiple sectors, labor

mobility, geographic accidents, and increasing returns to network building. Our examples illustrate

3The problem of choosing the gross trade flows is related to the minimum cost flow problem and to the optimal
transport problem on a network studied in the optimal transport literature, as we discuss in the literature review.
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the differences between optimal and suboptimal networks in terms of regional effects and aggregate

welfare, as well as the impact of the optimal network on the spatial distribution of economic activ-

ity. We also illustrate the contrast between the globally optimal networks in convex cases, where

the decreasing returns to shipping offset the increasing returns due to network building, and the

locally optimal networks in non-convex cases.

Our paper is related to a recent quantitative literature in international trade and spatial eco-

nomics. Eaton and Kortum (2002) and Anderson and Van Wincoop (2003) developed quantitative

versions of the Ricardian and Armington trade models, respectively, allowing counterfactuals with

respect to trade costs in multi-country competitive equilibrium. Recently, these frameworks have

been applied to spatial setups allowing for factor mobility and trade frictions within countries,

among other forces; e.g., see Allen and Arkolakis (2014), Redding (2016a), Fajgelbaum et al.

(2015), and Caliendo et al. (2014), among others.

Recent studies build upon these gravity frameworks by introducing a least-cost route optimiza-

tion problem of traders, and then undertake counterfactuals with respect to infrastructure. Along

these lines, Allen and Arkolakis (2014) simulate the aggregate welfare effect of the U.S. highway

system, Redding (2016a) compares the impact of infrastructure changes in models with varying de-

grees of increasing returns, Alder (2016) simulates counterfactual transport networks in India, Nagy

(2016) measures the historical impact of railroad growth in the U.S. on the spatial distribution of

economic, and Sotelo (2016) simulates the impact of highway investments on agricultural produc-

tivity in Peru. In an urban setup, Redding (2016b) develops a framework to study innovations to

urban transport systems and applies it to Berlin. More recently, Allen and Arkolakis (2016) adds

Fréchet shocks to the costs of traders choosing least-cost routes, leading to analytic expressions for

the welfare effect of local infrastructure improvements, and evaluate innovations to the U.S. high-

way system. Together with Allen and Arkolakis (2016), their model allows to compute the maximal

welfare gradient with respect to local changes in infrastructure around the initially observed data.

These studies rest upon methodological insights from Dekle et al. (2008), who showed how gravity

trade models can be used to undertake counterfactuals relative to observed trade data.4

Relative to this literature, the distinctive aspect of our framework is that it allows to compute

the globally optimal transport network in a general neoclassical environment. The framework nests

the Ricardian and Armington models commonly used in the recent quantitative economic geogra-

phy literature, canonical factor-endowment models such as the Hecksher-Ohlin and specific-factors

models, and standard urban economics models such as Rosen-Roback (Roback, 1982). We estab-

lish conditions under which the planner’s problem is a convex problem, ensuring that the globally

optimal network can be computed using standard gradient-descent methods. We also discuss the

properties and the numerical implementation of the optimal network when that condition does not

4Felbermayr and Tarasov (2015) studies optimal investments in infrastructure by competing planners in an Arm-
ington model where locations are arranged on the line. Some recent studies also allow for endogenous transport costs
in different historical contexts. Swisher IV (2015) model U.S. transport investments as the result of a Nash Equilib-
rium across competing companies in the context. Trew (2016) endogeneizes trade costs in the spatial-development
framework of Desmet and Rossi-Hansberg (2014) by making them depend on the amount of activity in a location,
and studies the role of transport infrastructure in shaping structural change in England and Wales.
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hold, due to for example increasing returns to network building or weak transport congestion.5

There is also a qualitative difference between the optimal transport problem embedded in our

model and the one in gravity models. Gravity models assume that each commodity is produced

in only one location (as in Armington) or that all the technologies to produce traded goods are

linear (as in the Ricardian model), and that transport technologies have constant returns to scale.

These assumptions imply that solving the least-cost route optimization across pairs of locations

is sufficient to fully characterize the optimal transport problem independently from any general-

equilibrium outcome. In our case, the same good may be produced in many regions, markets may

source the same good from different suppliers, and there may be decreasing returns in transport.

Therefore, endogenous variation in a commodity’s spatial supply and demand impacts the optimal

transport and vice-versa, linking the optimal-transport problem with the neoclassical allocation

problem.6

The optimal-transport problem embedded within our framework is related to problems studied

early on by Monge (1781) and Kantorovich (1942), and more recently surveyed by Villani (2003)

and Galichon (2016). However, our problem differs from this literature in three important aspects.

First, optimal transport problems in this strand of literature usually study the direct assignment

of sources to destinations, sidestepping the optimal route problem. In that regard, our approach is

more closely related to optimal flow and transport problems on a network as reviewed by Bertsekas

(1998) and in Chapter 8 of Galichon (2016). Second, in our model, consumption and production in

every location are endogenous because they respond to standard general-equilibrium forces. Instead,

the aforementioned optimal transport problems are typically concerned with mapping sources with

fixed supply to sinks with fixed demand. Third, our focus is on the optimization over network

investments, whereas this literature takes the transport costs between links as a primitive. Despite

these differences, we are able to follow the optimal transport literature in adopting the convenient

duality approach to solve for the global optimization problem. As a special case of a convex

optimization problem, our model shares the strong duality property that makes optimal transport

problems tractable. Therefore, an important insight of our approach is that embedding an optimal

transport problem into a general neoclassical spatial equilibrium extended with a network design

problem does not preclude the application of such resolution methods.7

5We focus on transport networks and their impact on goods’ trade. Chaney (2014a) studies endogenous networks
of traders in contexts with imperfect information. For a review of recent literature on the role of various types of
networks in international trade see Chaney (2014b).

6A useful case nested within our model that illustrates this property is the pure endowment economy, where the
supply of each good is exogenously given in each location. Even in the absence of transport congestion, least-cost
routes are no longer sufficient to solve for the optimal transport, for it is necessary to determine in what quantities
each source supplies each market. The optimal-transport problem embedded within our model yields the least-cost
route as the solution under the Armington or Ricardian assumptions in the absence of congestion in transport.

7Our paper also relates to the network-design literature in operations research, which studies related network-
design problems without embedding them in general-equilibrium spatial models. That literature is often focused
on heuristic approaches to finding local and global maxima in non-convex cases, with few general results. In the
trade literature, Alder (2016) applies an heuristic algorithm based on Gastner and Newman (2006) that progressively
eliminates links according to their impact on market-access measures to determine which cities should be connected
if a Chinese-style transport network was imposed in India.
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Finally, our framework could be combined with empirical research that estimates how transport

costs impact economic activity. For instance, Chandra and Thompson (2000), Baum-Snow (2007)

and Duranton et al. (2014) estimate the impact of the U.S. highways on various local economic

outcomes; Donaldson (2010) and Donaldson and Hornbeck (2016) estimate the impact of access to

railways in India and the U.S., respectively; and Faber (2014) estimates the impact of connecting

regions to the expressway system in China. Since our model determines the optimal location of

transport investments in a general geography, it may serve as a basis to construct instruments for

the location of transport infrastructure as function of observed economic fundamentals. Feyrer

(2009) and Pascali (2014) assess how the arrival of air transport and steam shipping, respectively,

impacted countries or cities whose geographic position made them more likely to use the new

transport mode, while studies such as Davis and Weinstein (2002) and Michaels and Rauch (2013)

study the degree of adjustment and persistence in networks of cities in response to large shocks.

Our model could be used to determine the impact of new transport technologies operating through

the optimal investments reshaping the network, and to study inefficient network lock-in due to

existing investments corresponding to dated economic fundamentals, two potential uses that we

illustrate in our examples.

2 Model

2.1 Environment

Preferences The economy consists of a discrete set of locations J = {1, .., J}. We let Lj be the

number of workers located in j ∈ J , and L be the total number of workers. We will entertain cases

with labor mobility, where Lj is determined endogenously, and cases without mobility in which

Lj is given. Workers consume traded goods aggregating the services of tradable commodities and

a non-traded good in fixed supply, such as land or housing. Utility of an individual worker who

consumes c units of traded goods h units of non-traded goods is

U (c, h)

where U is a homothetic function. This formulation will encompass cases where locations vary in

how attractive they are, e.g., because of amenities. In location j, per-capita consumption of traded

services is

cj =
Cj
Lj
,

where Cj is the aggregate supply of traded services in location j. There is a discrete set of tradable

sectors n = 1, .., N , combined into Cj through a CRS and concave aggregator,

Cj
(
C1
j , .., C

N
j

)
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where Cnj is the quantity of sector n’s output consumed in j. A convenient, but not necessary,

functional form corresponding to what is typically assumed in the literature is the CES technology,

Cj =

(
N∑
n=1

(
Cnj
)σ−1

σ

) σ
σ−1

(1)

where σ > 1 is the elasticity of substitution.8

Production The supply-side of the economy corresponds to a general neoclassical economy. In

addition to labor, there is a fixed supply V̄j =
{
V m
j

}
of primary factors m = 1, ..,M in location

j. These factors are immobile across regions, and may be either mobile or immobile across sectors.

Output of sector n in location j is:

Y n
j = Fnj

(
Lnj , V̄

n
j

)
, (2)

where Lnj is the number of workers and V̄ n
j =

{
V mn
j

}
m

is the quantity of other primary factors

allocated to the production of sector n in location j. The production function Fnj either has

constant returns to scale or is a constant (in which case the supply is an endowment). Therefore, the

production structure encompasses the neoclassical trade models. The Armington model (Anderson

and Van Wincoop, 2003) corresponds to N = J (as many sectors as regions) and Fnj = 0 for

n 6= j znj = 0, so that Y j
j is region j’s output in the differentiated commodity that (only) region

j provides. The Ricardian model corresponds to labor as the only factor of production and linear

technologies, Y n
j = znj L

n
j . The specific-factors and Hecksher-Ohlin models are also special cases of

this production structure.

Underlying Geography The locations J are arranged on an undirected graph (J , E), where

E denotes the set of edges (i.e., unordered pairs of J ). For each location j there is a set N (j) of

connected locations, or neighbors in short. Goods can be shipped only through connected locations;

i.e., goods shipped from j can be sent to any k ∈ N (j), but to reach any k′ /∈ N (j) they must

transit through a sequence of connected locations. The transport-network design problem will

consist in determining the quality of the infrastructure linking each pair of connected locations. A

natural case encompassed by this setup corresponds to j being a geographic unit such as county,

N (j) being its bordering counties, and shipments being done by land. More generally, neighbors

in our theory do not need to be geographically contiguous; e.g., it could be possible to ship directly

between distant locations by air or sea. Locations may engage in entrepôt trade, i.e., exporting

imported goods. We let Qnjk be the quantify of goods in sector n shipped from j to k ∈ N (j).

8For simplicity we assume that traded commodities are only used for final consumption. The framework can be
generalized to allow traded goods as intermediates in production.
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Transport Technology Because of dimensionality, optimizing over networks is usually intractable.

We approach this problem by convexifying the network. Specifically, we assume that transporting

goods entails resource costs. Transporting Qnjk units of commodity n from j to k requires τnjkQ
n
jk

units of the good n itself, where τnjk denotes the per-unit cost of transporting good n from j to k.

This cost may depend on the quantity shipped, Qnjk, and on a shifter Ijk that captures investments

in infrastructure along link jk through a congestion function τjk (Q, I):

τnjk = τjk
(
Qnjk, Ijk

)
Note that 1 + τnjk is the iceberg cost typically considered in the literature, except that here it may

depend on how much is shipped, Qnjk, and on the shifter Ijk.
9 We assume:

∂τjk (Q, I)

∂Q
≥ 0.

Assuming
∂τjk
∂Q > 0 implies decreasing returns in shipping, due to for example road congestion.

More generally, these decreasing returns may originate in the presence of specific factors in trans-

portation.10 In short, the more is shipped, the higher the per-unit shipping cost. When
∂τjk
∂Q = 0,

the marginal cost of shipping is invariant to the quantity shipped.

In addition, the shipping cost between j and k depends on the investments undertaken on that

link, Ijk. A higher Ijk determines a higher capacity in the link jk, representing for example a better

road quality or more lanes. Hence, we assume:

∂τjk (Q, I)

∂I
< 0.

The mapping from the infrastructure investment I to the congestion τ compounds the rate at which

investments translate into road capacity, and the rate at which road capacity translates into unit

costs. In the absence of investment, transport along jk could be either feasible, τjk

(
Qnjk, 0

)
> 0,

or prohibitively costly, τjk

(
Qnjk, 0

)
= ∞. Only when investments go to infinity there is free

transport, τjk

(
Qnjk,∞

)
= 0. Finally, we note that the congestion function τjk is allowed to vary

by jk, denoting that, due to geographic accidents, shipping along some links may be more costly

than along others given the same quantity shipped and infrastructure investment.11

Flow Constraint In every location there are tradable commodities being produced, coming

in, and coming out. The balance of these flows requires that, for all locations j = 1, .., J and

9In the standard formulation in the trade literature, the iceberg trade cost is defined as a coefficient greater than
one such that one unit arrives if that many units are shipped. Here, 1 unit arrives if 1 + τ units are shipped.

10Our framework and main results can be extended to encompass cases where the cost of transporting goods is de-
fined per unit and nominated in terms of primary factors, the final traded good, or the final non-traded good. We skip
the presentation of these cases to save notation, but their incorporation in the planner’s problem is straightforward.

11The locations k /∈ N (j) unconnected to j can be equivalently modeled as connected locations for which
τjk (Q, I) =∞ for all Q and I.
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commodities n = 1, .., J :

Cnj +
∑

k∈N(j)

(
Qnjk + τ

(
Qnjk, κ

n
jk

)
Qnjk

)
6 Y n

j +
∑
i∈N(j)

Qnij (3)

The left-hand side of this inequality is location j’s consumption of good n, exports to neighbors

and quantities lost in transit. These flows must be less than domestic production and imports from

neighbors.12

We let Pnj be the multiplier of this constraint. This multiplier reflects society’s valuation of a

marginal unit of good n in location j. In the decentralized allocation, this multiplier will equal the

price of good n in location j; therefore, we simply refer to Pnj as the price of good j in location n.

Network-Building Constraint The network-design problem will consist in choosing the invest-

ments {Ijk}j,k∈N (j) for any two connected nodes. For simplicity, we assume that the investment

is nominated in units of a freely-mobile resource in fixed supply K which cannot be used for any

purpose other than building infrastructure. This assumption leads to the intuitive feature that the

opportunity cost of building road capacity in any location corresponds to not building optimally

somewhere else. Hence this approach is consistent with assuming that society has sunk a fraction

of its resources into network-building, but must still decide how to allocate these resources. The

network-building constraint is ∑
j

∑
k∈N (j)

Ijk = K. (4)

We assume Ijk = Ikj , so that the investment on one link applies to shipments in either direction.

The framework can easily accommodate more general cases where I is an aggregator of local primary

factors, in which case the opportunity cost of building roads would vary across locations.13

A Convenient Parametrization For illustrative purposes and to implement the model, a con-

venient parametrization is the following constant-elasticity transport technology,

τjk (Q, I) =
Qβ

κjk (I)
(5)

where κjk (I) is the road’s capacity, itself a function of the investment,

κjk (I) =

(
I

δjk

)γ
. (6)

If β > 0, this formulation implies congestion in shipping: the more is shipped, the higher the per-

unit shipping cost; when β = 0, the marginal cost of shipping is invariant to the quantity shipped,

12In standard minimum-cost flow problems this restriction is referred to as “conservation of flows constraint”.
E.g., see Bertsekas (1998) and Chapter 8 of Galichon (2016).

13E.g., letting I = F Ij
(
LIj , V̄

I
j

)
where LIj and V̄ Ij are local labor and factors used in network building and F Ij is a

CRS production function.
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as in the standard iceberg formulation. In turn, γ captures the returns to scale in road-building.

If γ < 1 then there are decreasing returns in the technology to build roads. The shifter δjk denotes

how costly it is to build a lane from j to k, e.g. because of geographic accidents.

2.2 Planner’s Problem

We solve the problem of a utilitarian social planner who maximizes worker’s welfare. Letting

ωj be the planner’s weight per worker located in region j, we define this problem as follows.

Definition 1. The planner’s problem without labor mobility is

W = max
cj ,hj ,Cj ,

{
Cnj ,L

n
j ,V̄

n
j ,{Qnjk}k∈N(j)

}
n
,{Ijk}k∈N(j)

∑
j

ωjLjU (cj , hj)

subject to:

(i) availability of traded commodities,

cjLj 6 CTj
(
C1
j , .., C

N
j

)
for all j;

and availability of non-traded commodities,

hjLj 6 Hj for all j;

(ii) the balanced-flows constraint,

Cnj +
∑

k∈N(j)

(
Qnjk + τjk

(
Qnjk, Ijk

)
Qnjk

)
6 znj F

(
Lnj , V̄

n
j

)
+
∑

i∈N(j)

Qnij for all j, n;

(iii) the network-building constraint, ∑
j

∑
k∈N (j)

Ijk ≤ K,

with Ijk = Ikj;

(iv) local labor-market clearing, ∑
n

Lnj ≤ Lj for all j;

and local factor market clearing for the remaining factors,∑
n

V lnj ≤ V lj for all j and l;

(v) the non-negativity constraints on flows, trade costs and factors

Qnjk ≥ 0 for all j, k ∈ N (j) , n

Ijk ≥ 0 for all j, k ∈ N (j) , n

Lnj , V
n
j ≥ 0 for all j, n.

If labor is mobile then the problem is defined as follows.
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Definition 2. The planner’s problem with labor mobility is

W = max
cj ,hj ,Cj ,

{
Cnj ,L

n
j ,V̄

n
j ,{Qnjk,κnjk}k∈N(j)

}
,Lj ,u

u

subject to restrictions (i)-(v) above; as well as:

(vi) free labor mobility,

uLj ≤ U (cj , hj)Lj for all j;

(vii) aggregate labor-market clearing, ∑
j

Lj = L; and

This formulation restricts the planner’s problem to allocations satisfying utility equalization

across locations. Since U is strictly increasing in its arguments, restriction (vi) implies that the

planner will allocate u = U (cj , hj) across all populated locations, and cj = 0 otherwise. Since

per-capita utility equalization across locations holds in the competitive allocation, we restrict the

planner’s problem to allocations that can be implemented by the market.

The planner problem from Definition 1 can be expressed as nesting three problems:

W = max
Ijk

max
Qnjk

max
Cnj ,Y

n
j

∑
j

ωjLjU (cj , hj)

subject to constraints. A similar nesting can be expressed in the case with labor mobility from

Definition 2. We now discuss some intuitive properties of the planner’s solution.

Neoclassical Allocation Problem The innermost maximization problem over Cnj , Y
n
j can be

cast as a standard neoclassical allocation problem of choosing consumption and output given goods

prices subject to the production possibility frontier. This problem does not depend on the flows Qnjk
nor on the network investments Ijk other than through the prices Pnj . Since, as we show below, the

second welfare theorem holds, the neoclassical allocation and gross flows from the planner’s problem

correspond to a competitive market equilibrium with transfers set in relation to the planner’s

weights, ωj .

Optimal Transport Problem The problem over Qnjk given the neoclassical allocation is the

optimal-transport problem. Given quantities supplied and demanded, this problem determines the

efficient shipping throughout the network accounting for congestion through the balanced-flows

constraint (3). Given production Y n
j and consumption Cnj , in the absence of congestion this is

a standard problem considered in the optimal transport literature, e.g., chapter 8 of Galichon

(2016). To understand the solution to this problem, remember that Pnj is the multiplier of the

flows constraint (ii), equal to the price of good n in location j in the market allocation. The

solution to the planner’s problem gives the following equilibrium price differential for commodity
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n between j and k ∈ N (j):

Pnk
Pnj
− 1 ≤

(
εnQ,jk + 1

)
τnjk,= if Qnjk > 0, (7)

where we have used the notation τnjk ≡ τjk
(
Qnjk, Ijk

)
, and where

εnQ,jk ≡
∂τnjk
∂Qnjk

Qnjk
τnjk

is the elasticity of the per-unit transport cost with respect to the quantity shipped. Condition (7) is

a standard no-arbitrage condition: the price differential between location j and any of its connected

locations k must be less than or equal than the marginal cost. From the planner’s perspective, this

cost includes both the per-unit shipping cost τnjk and the marginal congestion εnQ,jk. In the absence

of decreasing returns in transport, εnQ,jk = 0, the price differential only reflects transport cost, as

in the standard constant iceberg cost formulation.

This expression has a number of intuitive properties that we exploit throughout our analysis.

First, given the network investment, (7) identifies the trade flow Qnjk as function of the price

differential as long as the right-hand side is an invertible function of Qnjk. This is the case whenever

the total shipping cost τnjkQ
n
jk is convex in Qnjk, as established in Proposition (1). Second, whenever

that condition holds, the gross trade flow Qnjk is increasing in the price differential
Pnk
Pnj

: the larger

the difference in marginal valuations, the higher the flow to the location where the product is more

scarce. It also implies that goods in each sector flow in only one direction; i.e. Qnjk > 0⇒ Qnkj = 0.

However, there may be flows in opposite direction along the same link corresponding to different

goods. Third, given the relative prices, the flows are decreasing with the marginal congestion, εnQ,jk.

For example, assuming constant-elasticity congestion as in (5), we have εnQ,jk = β. Then, we

obtain the following gross trade flow of good n from j to k as function of prices:

Qnjk =


[
κjk
β+1

(
Pnk
Pnj
− 1
)] 1

β
if Pnk ≥ Pnj

0 otherwise
. (8)

This solution naturally implies that increases in capacity are associated with higher flows given the

price differentials.

The first-order condition (8) reduces the dimension of the optimal-transport problem. Sub-

stituting the solution for Qnjk as function of the price differentials Pnk /P
n
j into the balanced-flows

constraints (ii) yields a system of nonlinear equations with as many prices as regions for each good.

Therefore, for each commodity, the optimal transport problem can be solved finding the J prices

Pnk , one for each location. Rather than solving globally for least-cost routes, this characterization

optimizes on the local flows. The global paths and quantities delivered to each destination are

defined once the prices are solved for. The least-cost route typically present in the applications of
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the gravity literature is the solution in the absence of congestion (β = 0) if, in equilibrium, each

market sources each product from only one source, as in the Armington model where products are

differentiated by origin.

Network Investment Problem Consider now the outer problem of choosing the network Ijk

given the optimal transport and the neoclassical allocation. Letting µ be the multiplier of the

network-building constraint (iv), the planner’s choice of Ijk gives

Ijkµ =
∑
n

Pnj Q
n
jkτ

n
jkε

n
I,jk +

∑
n

Pnk Q
n
kjτ

n
kjε

n
I,kj , (9)

where

εnI,jk ≡
∣∣∣∣∂τnjk∂Ijk

Ijk
τ

∣∣∣∣
is the elasticity of the per-unit transport cost with respect to the network investment.14 To interpret

this condition, note that its left-hand side is the opportunity cost of investing along jk, defined as

the marginal valuation for the scarce resource used to build transport infrastructure (µ) times the

quantity invested Ijk along jk. This marginal cost of improving the transport capacity of the link

jk must equal the marginal savings in shipping in the right-hand side of 9. The first sum includes

the savings in shipments from j to k. The investment reduces the per-unit cost by τnjkε
n
I,jk, saving

on the Qnjk units shipped of each good n with social value Pnj . The second sum includes the savings

in shipments in the opposite direction.

Assuming constant-elasticity technologies (5) and (6), we have εI,jk = γ. Further imposing

δjk = δkj , so that given the infrastructure investment the congestion function is symmetric with

respect to the direction of the flows, we obtain the following road capacities:15

κjk = κkj =

(
γ

µδjk

∑
n

(
Pnj
(
Qnjk

)1+β
+ Pnk

(
Qnkj

)1+β
)) γ

1+γ

. (10)

The optimal road capacity is higher along links with more gross flows in either direction (Qnjk > 0

or Qnkj > 0). Given these flows, the optimal capacity also increases with prices at origin: because

shipping requires the good being shipped as an input, a higher price at origin implies a higher

marginal saving from investing.16 Conditioning on these outcomes, the optimal network capacity

14Note that, for simplicity, we have constrained the planner’s problem to symmetric investments in both directions,
i.e. Ijk = Ikj . Still, we allow for δjk 6= δkj , so that, given the amount invested Ijk, the shipping cost function
τjk (Q, Ijk) depends on the direction of the flow. E.g., it can be cheaper drive downhill or to sail with the wind’s
direction.

15More generally, the solution with asymmetric terrain or shipping costs is κjk =
(
Ijk
δjk

)γ
, where:

Ijk = Ikj =

[
γ

µ

∑
n

(
Pnj δ

γ
jk

(
Qnjk

)1+β
+ Pnk δ

γ
kj

(
Qnkj

)1+β
)] 1

1+γ

.

16In cases where shipping requires local resources such as labor in j, a similar logic implies that a higher shadow
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is lower when building infrastructure is more costly (higher δjk).

Importantly, using the solution for Qnjk from (7), the network investment problem inherits from

the optimal transport problem the useful property that prices in locations j and k are sufficient to

determine the optimal investment in the link jk.

Convexity We next establish the convexity of the planner’s problem.

Proposition 1. (Convexity of the Planner’s Problem) Given the network investments {Ijk}, the

optimal transport+neoclassical allocation problem is a convex optimization problem if Qτjk (Q, Ijk)

is convex in Q ∈ R+ for all j and k ∈ N (j). The full planner’s problem from Definition (1) (resp.

Definition (2)) is a convex (resp. quasiconvex) optimization problem if Qτjk (Q, I) is convex in

Q ∈ R+ and I ∈ R+ for all j and k ∈ N (j). When the transport technology is given by (5) and

(6), this property is ensured by β ≥ γ.

The proof is straightforward. Given the neoclassical assumptions, all the constraints are convex,

except potentially the balanced-flows constraint. Adding decreasing returns in transport ensures

convexity of that constraint as well. Without labor mobility, the objective is concave due to

decreasing marginal utility from consumption of the traded good. In the case with labor mobility,

the objective function is only quasiconcave, but the Arrow-Enthoven theorem for sufficiency of the

Kuhn-Tucker conditions under quasiconcavity is satisfied (Arrow and Enthoven, 1961).17 This result

has the important implication of establishing conditions under which the Kuhn-Tucker conditions

are both necessary and sufficient to identify the optimal solutions. Therefore, well-known numerical

algorithms can be applied to find numerically the solution (Boyd and Vandenberghe, 2004).

The condition ensuring convexity restricts how congestion in shipping Q and the network in-

vestment I combine in the transport technology in each link through τjk (Q, I). Intuitively, the

condition requires the increase in marginal transport costs resulting from higher traffic along a link

to offset the reduction in those costs resulting from investments in that link. This interpretation

can be clearly grasped when the transport technology is given by (5) and (6). In that case β ≥ γ

denotes stronger congestion in network-building than in transport. In the absence of decreasing

returns in transport (i.e., if
∂τjk
∂Q = 0), convexity necessarily fails.

Non-Convex Cases When the condition guaranteeing global convexity in Proposition 1 fails

we cannot ensure the sufficiency of the first-order conditions. We discuss below how to deal with

these cases computationally. Non-convex cases are interesting, for they give rise to networks with

distinctive properties.

Proposition 2. When the transport technology is given by (5) and (6) and γ > β and there is a

single commodity, the optimal transport network is a disjoint union of trees.

value of labor in j, or wages in the market allocation, translate into more investments in the link jk to economize on
the relatively scarce resource.

17This theorem requires that the the gradient of the objective function is different from zero at the optimal point.
This property holds in our context.
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A tree is a connected graph with no loops. Intuitively, cycles cannot be optimal, because it

is strictly better, from the planner’s perspective, to remove a link from the loop and concentrate

resources in other links. As a result, only one path links any two locations in the network. Note

that, despite this property, the optimal-transport problem is still not trivial because it is necessary

to determine the quantity of output from each location that is sourced by every other location.

2.3 Decentralized Allocation

We establish that the planner’s allocation corresponds to a decentralized equilibrium. We focus

on the decentralization of the neoclassical allocation (maxCnj ,Y nj ) and optimal-transport (maxQnjk)

problems with and without labor mobility given the network investments {Ijk}. In the decentral-

ization, the network is taken as given and assumed to be constructed by a benevolent government

who owns the stock K of the input used to build the network.18

Given the network, the decentralized economy corresponds to the perfectly competitive equi-

librium of a standard neoclassical economy where consumers maximize utility given their budget,

producers maximize profits subject to their production possibilities, and goods and factor markets

clear.

Relative to standard international trade and economic geography models, there only one slightly

less standard feature: because of aggregate congestion in transport, we must account for externali-

ties and rents in the transport sector. We assume perfect competition and free entry into transport.

In each location, atomistic traders purchase goods and ship them to connected locations. As long

as there is congestion, atomistic traders who take the iceberg trade cost as given engage in too

much shipping. To correct this externality, we allow for Pigouvian sales taxes tnjk on companies

shipping good n on leg j → k. The profits made by an individual company shipping good n from

j to k are:

πnjk = max
qnjk

[
pnk
(
1− tnjk

)
− pnj

(
1 + τnjk

)]
qnjk,

where pnj is the price of good n in location j in the market allocation and qnjk is the quantity shipped.

Each individual shipping company takes the iceberg trade cost τjk as given, although this trade

cost is determined endogenously through (5) as function of the aggregate quantity shipped. Free

entry ensures that πnjk ≤ 0, with equality if there are actual shipments, Qnjk > 0. As a result, the

rents from the transport sector equal the tax revenue collected by the government.

We must also allocate the returns to factors other than labor. Under no labor mobility we assume

that, in addition to the wage, each worker in j receives a transfer bj such that
∑

j bjLj = Π, where

Π is an aggregate portfolio including all the sources of income, including tax revenues, except for

labor. Hence, no other agent except for workers own the primary factors or the non-traded goods,

or are rebated the tax revenues. This formulation allows for trade imbalances, which are needed

to implement the planner’s allocation under arbitrary weights. Under perfect labor mobility, we

18This structure can be generalized to more general formulations, where resources used to produce traded and
non-traded goods can also be used to build the network, and where the benevolent planner taxes the private sector
to obtain the resources to build the network.
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assume that all workers own an equal fraction of all the sources of income other than labor regardless

of location, so that bj = Π
L for all j.

Since it is standard, we relegate the Definition 3 of the competitive allocation with and without

labor mobility to the appendix. Using that definition, we establish that the welfare theorems given

the transport network hold.

Proposition 3. (First and Second Welfare Theorems) If the sales tax on shipments of product n

from j to k is

1− tnjk =
1 + τnjk

1 +
(
εnQ,jk + 1

)
τnjk

,

then:

(i) if labor is immobile, the competitive allocation coincides with the planner’s problem under

specific planner’s weights ωj. Conversely, the planner’s allocation can be implemented by a market

allocation with specific transfers bj; and

(ii) if labor is mobile, the competitive allocation coincides with the planner’s problem.

In either case, the price of good n in location j, pnj , equals the multiplier on the balanced-flows

constraint in the planner’s allocation, Pnj .

2.4 Numerical Implementation

Convex Case We use solvers that rely on the dual approach typically pursued in optimal trans-

port problems. Specifically, letting L be the Lagrangian of the planner’s problem as function of the

variables controlled by the planner, x, and the multipliers λ, the strong duality implies that the

solution to the dual problem,

inf
λ

sup
x
L (x, λ) ,

is equivalent to the solution to the primal problem,

sup
x

inf
λ
L (x, λ) .

The advantage of the dual approach is that we are able to use the first-order conditions from the

optimal transport problem and the optimal investment problem, (7) and (10), as well as those from

the neoclassical allocation problem, to express the control variables as function of the multipliers,

x (λ). The remaining minimization problem,

inf
λ
L (x (λ) , λ)

is a globally convex minimization problem without constraints over NJ variables corresponding to

the goods prices across locations.19 Instead, solving the problem using the primal approach would

19There is an additional multiplier, corresponding to the the network-building constraint (4), but its value can be
easily computed to satisfy that constraint.
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require solving a much higher dimensional system with additional constraints. The convexity of

the dual problem ensures the convergence of gradient-descent methods. For practical purposes, we

use a convex solver based on an interior-point method, which converges in polynomial time and

can easily handle thousands of variables at a time, when the sparsity of the problem is taken into

account.20

Nonconvex case To compute non-convex cases in which the condition stated in Proposition

(1) fails we exploit the property, stated in the first of Proposition 1, that the neoclassical alloca-

tion+optimal flows problem nested within the planner problem is convex as long as Qτjk (Q, Ijk) is

convex in Q. This property holds for weak assumptions on τ , including the standard formulation

where iceberg costs are independent from the quantity shipped. We follow an iterative procedure,

where we solve for the global optimum over Cnj , Y n
j , Qnjk given the network investments Ijk, and

then use the optimal network investment condition (9) to characterize Ijk as function of the solution

to the neoclassical-allocation and optimal-transport problems. In practice, this algorithm always

converges to a local optimum. We then refine that solution using a simulated annealing method

that perturbs the local optimum and searches for a better network in its vicinity. Our current work

in progress explores the implementation of branch-and-bound methods which provide arbitrarily

close approximations to the global optimum.

3 Examples

We implement examples that illustrate some economic forces captured by the framework. We

start with simple, low-dimensional environments, and build up to more complex cases. Preferences

between traded and non-traded goods are CRRA over consumption bundles and Cobb-Douglas

between the traded and non-traded good:

U =

(
cαh1−α)1−ρ

1− ρ
,

with α = 1
2 and ρ = 2. There is a single factor of production, labor, and all technologies are linear.

We adopt the constant-elasticity functional forms (5) and (6) for the congestion and network-

building technologies. Except otherwise noted, we impose β = γ = 1. I.e., both the technology to

build capacity and the congestion function are linear. This parametrization is at the boundary of

the parameter space guaranteeing global convexity.

We start by inspecting cases with a single good, no labor mobility, and convexity of the planner

solution. Then, we introduce multiple sectors, labor mobility, and cases with increasing returns to

building the network where the convexity of the planner’s problem fails.

20We use the open-source large-scale optimization package IPOPT (https://projects.coin-or.org/Ipopt), available
for C/C++, Fortran, MATLAB and other languages.
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3.1 One Good on a Regular Geometry

Comparative Statics over K in a Symmetric Network Figure A.1 presents a network with

132 locations uniformly distributed in a square, each connected to 8 neighbors. All fundamentals

except for productivity are symmetric: (Lj , Hj , δij) = (1, 1, 1). Labor productivity is zj = 1 at the

center and 10 times smaller elsewhere.

Figure A.2 shows the globally optimal network when K = 1 (panel (a)) and when K = 100

(panel (b)). The upper-left figure in each panel displays the optimal network capacities κij corre-

sponding to (6). The optimal network investments radiate from the center, and so do shipments.

The bottom figures in each panel display the multipliers of the flows constraint (3) –the prices in

the market allocation– and consumption. Because tradable goods are less abundant in the out-

skirts, marginal utility is higher and so are prices. As the aggregate investment grows from K = 1

to K = 100, the network grows into the outskirts and differences in the marginal utility shrink.

Panel (a) of Figure A.3 displays the spatial distribution of prices (upper panel) and consumption

(bottom). The left panels display outcomes across locations ordered by euclidean distance to the

center. As the network grows, relative prices and consumption converge to the center, and spatial

inequalities are reduced.

Panel (b) of Figure A.3 illustrates the difference between the welfare gains from uniform and

optimal network expansion. For K close to zero, the capacities κjk are small everywhere and all

locations are close to autarky We simulate an increase in K in two cases: uniformly allocating

I across all links (a “rescaled” network) and optimally doing so. The figure reports the welfare

increase associated with each network. Broadly speaking, the uniform network expansion corre-

sponds to the standard counterfactual implemented in international trade, in which trade costs are

reduced uniformly from autarky to trade. As K grows, the economy converges to the free-trade

level of welfare regardless of whether the network is optimal. Moving from close to autarky to close

to free trade increases welfare by 2.5%. However, investing optimally leads to faster convergence

to the free-trade welfare level. In the example, the welfare level attained in the uniform network

when K = 105 is attained in the optimal network when K = 102.

Lock-In versus Optimal Network The top panel of Figure A.4 illustrates a case with losses

from lock-in in a suboptimal network. Starting from the same symmetric geography as our previous

example, Panel (a) shows the optimal size-K network when the high-productivity city is located

at the southwest corner instead of in the middle. In Panel (b), productivity increases in the city

at the northeast, but decreases at the southwest. At the same time, an additional quantity ∆K of

resources is invested. Optimal network investments are diverted to the northeast, and the southwest

network shrinks. Panel (c) shows a spatial distribution of productivities identical to (b), but now

the network is constrained to to be built upon the existing network.

Hence, the networks in (b) and (c) entail the exact same amount of investments, K + ∆K.

However, network (c) is a suboptimal network corresponding to lock-in in an older network targeting

a different spatial productivity distribution, while network (b) targets the final distribution of
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productivity. In the lock-in network, close-by regions do not develop despite the large productivity

increase in the northeast. The bottom panel in Figure A.4 shows the welfare loss from lock-in,

defined as the difference in welfare between panels (c) and (b) in the top panel, as function of

the new city’s productivity. The larger is the new city’s productivity, the largest is the loss from

lock-in.

Random Cities and Non-Convex Cases We now explore more complex networks and non-

convex cases. Figure A.5 shows 20 cities randomly located in a space where each location has six

neighbors. Population is Lj = 1 in the cities and 0 otherwise. Productivity is again ten times

larger at the center. The top panel shows the capacity and goods flows in the optimal network.

The optimal network radiates from the center to reach all destinations. Due to congestion, multiple

sub-routes are built. As a result, some destinations are reached through multiple routes. However,

to reach some faraway locations only one route is built.

The middle panel inspects the same spatial configuration but assumes γ = 2. Now, the sufficient

condition for global convexity from Proposition 1 fails. We see a qualitative change in the shape

of the network. Due to increasing returns in network building, less roads with higher capacity are

built. In particular, there is now only one route linking any two destinations, consistent with the

no-loops result in Proposition 2.

Because in the non-convex network we can only guarantee convergence to a local optimum,

we refine the solution applying simulated annealing. The bottom panel compares the non-convex

network before and after the annealing refinement. The refined network economizes on the number

of links, leading to a welfare increase but preserving the no-loops property.

3.2 Multiple Sectors, Labor Mobility, and Non-Convexity

One Homogeneous Good and 10 Differentiated Goods All the applications so far included

only one traded sector. We now show a case with multiple traded goods. We allow for 11 traded

commodities, one “agricultural” good that may be produced everywhere (zj = 1 everywhere) and

ten “industrial” goods each produced in one random city only (zj = 1 in only one city and zj = 0

otherwise). These goods are combined into via the CES aggregator (1) with elasticity σ = 2.

The first panel in Figure A.6 shows the optimal network. In the figure, each circle’s size denotes

the exogenous population, equal to 1 everywhere. The remaining figures show the shipments of

each good, with the circle sizes representing production. Figure A.7 shows the optimal network

with annealing when γ > 2. In these examples, we observe complex shipping patterns. There are

bilateral flows over each link, now involving several commodities. The homogeneous good travels

short distances to fulfill the needs to the industrial cities. Overall, the optimal network in the first

panel reflects the spatial distribution of comparative advantages. Even though population is the

same everywhere, the network has high capacity close to places specialized in industrial goods, and

branches out into the agricultural hinterland. Figures A.8 and A.9 replicate figures A.6 and A.7

allowing for labor mobility. Workers now endogenously concentrate in the locations with capacity
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to produce the industrial goods, but the network shape is preserved otherwise.

A Ricardian Economy In Figure A.10 we now consider the Ricardian economy with 2 goods.

Productivity in good 1 is higher at the center, as shown in the upper-left panel of panel (a), and

equal to 1 everywhere else. Panel (a) shows the allocation of labor in each sector, the optimal

network and the pattern of shipping under a uniform population distribution, whereas Panel (b)

shows the same outcomes when workers are freely mobile. Both figures correspond to the convex

network. We allow for aggregate decreasing returns in each sector, so that some locations may be

incompletely specialized. Locations at the center with comparative advantages in good 1 specialize

in that good and ship it out to the periphery. As labor becomes mobile, workers sort based on

absolute advantages, and population density increases at the center but the pattern of specialization

remains unchanged.

3.3 Geographic Features and New Transport Technologies

We now show how the framework can accommodate geographic accidents. For simplicity we

focus again on the case with a single good and no factor mobility. Panel (a) of Figure A.11 shows

20 cities randomly allocated in a space where each location is connected to 8 other locations.

Population equals 1 in all cities. Productivity is the same everywhere (equal to 0.1), except in the

central city where it is 10 times larger. Aggregate consumption in the optimal allocation varies in

proportion to each city’s size in the figure.

The function mapping infrastructure investments to a link’s capacity depends on the link-specific

coefficient δij in 6. In panel (a) we show the optimal network under the assumption that the cost

of adding capacity is directly proportional to geographic distance:

δij = δ0 + δ1Euclidean Distanceij . (11)

As in our first set of examples, the optimal network radiates from the highest-productivity cities

in order to reduce differences in marginal utility across the populated locations.

In panel (b), we add a “mountain” by stretching the euclidean distance between links in the

northeast. The optimal network now circles the mountain to reach small cities in the northwest,

although it remains optimal to build roads on the hillside. Because more resources need to be

invested in that region, the network shrinks elsewhere.

In the subsequent figures, we either increase or reduce the cost of building the network in specific

links. Specifically, we allow for the more general function:

δij = δ0 + δ1Euclidean Distanceij + δ2CrossingRiverij + δ3AlongRiverij . (12)

In panel (c) we include a river and assume that δ2 = δ3 =∞, so that either crossing or navigating

along the river is prohibitively costly. The optimal network linking cities on either side of the river

can only be built through the only patch of dry land. In panel (d) we assume that no dry patch

19



exists, but building bridges is feasible, δ2 < ∞. Now, the planner builds two bridges, directly

connecting the two pairs of cities on either side of the river. In turn, panel (e) allows for water

transport by allowing building network capacity along the river (δ3 < ∞). The planner retains

the bridges, but it now reaches faraway locations in the southeast via water instead of ground

transport.

Finally, panel (f) moves to the non-convex case, γ = 2 > β, implemented through the FOC +

simulated annealing approach we have described. Now, a unique route links any two cities, water

transport is not used, and a single bridge is built.

We show how the arrival of new transport technologies can lead to a reconfiguration of city sizes

based on their initial geographic position. Both panels of Figure A.12 corresponds to an economy

with random cities, all with same population, where productivity is 10 times larger in the city

represented with the bigger circle than in every other city. The circle sizes represent consumption

per capita. Panel (a) shows an economy with strong dependence on water transport (a low δ3

in (12)). The optimal network leads to high consumption per capita at the river crossing. In

panel (b) we assume that ground transport becomes cheap (e.g., due to the arrival of railways) (a

lower δ1 in (12)). As a result, water transport is no longer used. Instead, the economy relies only

ground transport and bridges. Because of the new transport technologies, the spatial distribution

of consumption per worker is reconfigured. In particular, the city originally located at the river’s

crossing shrinks and and consumption in the city at the river intersection shrinks, while all the

other cities in the hinterland grow.

4 Conclusion

In this paper we developed a framework to study optimal transport networks in spatial equi-

librium models. The framework combines three components: a general neoclassical model where

each location is a node in a graph, an optimal transport problem subject to congestion in shipping,

and an optimal network investment problem. The framework nests the neoclassical models used

in international trade and allows for factor mobility. If congestion in transport is strong relative

to the returns to infrastructure investments, the planner’s is a standard convex optimization prob-

lem, guaranteeing convergence of efficient gradient-descent based algorithms. In the absence of this

property, we are still able to implement the framework combining the first order conditions of the

planner’s problem with standard global-search numerical methods.

In this preliminary version of the paper we have used the model to characterize the globally

optimal transport network in different spatial equilibrium environments and to contrast it with

sub-optimal networks. We implemented the optimal network in simple regular geometries with

a single good and no mobility, and in more complex environments with randomly located cities,

labor mobility, and many sectors. Our examples have illustrated the differences between optimal

and suboptimal networks in terms of regional effects and aggregate welfare, as well as the impact of

the optimal network on the spatial distribution of economic activity. We have also illustrated the
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contrast between globally optimal networks in convex cases, where congestion in shipping offsets

increasing returns due to network building, and locally optimal networks in non-convex cases, in

which case the optimal network is sparser, more concentrated in fewer links, and tree-shaped.

Our work in progress explores applications of the framework to some of the specific questions

we have initially posed: What would be the gains from replacing actual, potentially inefficient

networks with the optimal transport network, and how do these gains vary across countries? How

does the optimal transport network interact with the sources of comparative advantages, such as

differences in relative productivity and factor endowments, vis-a-vis natural geographic features?

How does the optimal response of the transport network diffuse local shocks and impact the spatial

distribution of economic activity? Our framework could also be combined with empirical research

that estimates how transport costs impact economic activity. For instance, it may serves as basis to

construct instruments for the location of transport infrastructure as function of observed economic

fundamentals, to determine the aggregate and regional impacts of new transport technologies op-

erating through the optimal investments reshaping the network, and to study cases with inefficient

lock-in due to existing investments corresponding to past fundamentals.
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A Figures

Figure A.1: A Simple Underlying Geography
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Figure A.2: The Optimal Network for K = 1 and K = 100

(a) K=1

(b) K=100
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Figure A.3: Optimal Network Growth

(a) Spatial Inequalities
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Figure A.4: Inefficient Network Lock-in

(a) Lock-in and Optimal Network

(b) Welfare Differences between Optimal and Lock-in Network

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Productivity of new city

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

W
el

fa
re

 (
co

ns
. e

qu
iv

al
en

t)

Gain from moving to the optimal network

27



Figure A.5: Optimal Network with Random Cities, Convex and Non-Convex Cases

(a) Convex Case: γ = β = 1

(b) Non-Convex Case: γ = 2 > β = 1

(c) Optimal Capacities Before and After Annealing Refinement in Non-Convex Case
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Figure A.10: A 2-Goods Ricardian Economy

(a) No Labor Mobility

(b) Labor Mobility
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Figure A.11: The Optimal Transport Network under Alternative Building Costs

(a) Baseline Geography (b) Adding a (Gaussian) Mountain

(c) Adding a River and an Exogenous Bridge (d) Adding Endogenous Bridges

(e) Adding Water Transport (f) Non-Convex Case (γ = 2; β = 1) with Annealing
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Figure A.12: Arrival of a New Transport Technology and Network Reoptimization

(a) Initial Geography Dependence on Water Transport (b) Allowing for Cheap Land Transport
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B Proofs

Proposition 1. (Convexity of the Planner’s Problem) Given the network investments {Ijk}, the optimal-transport

and neoclassical allocation problems are convex if Qτjk (Q, Ijk) is convex in Q ∈ R+ for all j and k ∈ N (j). The full

planner’s problem from Definition (1) (resp. Definition (2)) is a convex (resp. quasiconvex) optimization problem if

Qτjk (Q, I) is convex in Q ∈ R+ and I ∈ R+ for all j and k ∈ N (j). When the transport technology is given by (5)

and (6), this property is ensured by β ≥ γ.

Proof. Consider the planner’s problem from Definition 1. We can write the problem as

max{
Cj ,

{
Cnj ,

{
Qn
jk
,Ijk

}
k∈N(j)

}}
∀j

f0 =
∑
j

ωjLjU

(
Cj
Lj
,
Hj
Lj

)

subject to: (i) availability of traded commodities,

f1 = Cj − Cj
(
C1
j , .., C

N
j

)
6 0 for all j;

(ii) the balanced-flows constraint,

f2 ≡ Cnj +
∑

k∈N(j)

Qnjk
[
1 + τjk

(
Qnjk, Ijk

)]
− znj F

(
Lnj , V

1n
j , .., V Knj

)
−
∑

i∈N(j)

Qnij ≤ 0 for all j, n;

(iii) the network-building constraint, ∑
j

∑
k∈N (j)

Ijk ≤ K;

and conditions (iv)-(v) in the text. Since constraints (iii)-(v) are linear, we just need f0 to be concave and f1 and f2

to be convex. Since ∂U
∂c

< 0, f0 is concave. Cj
({
Cnj
})

is concave, it is concave, hence f1 is convex. If Qτjk (Q, I) is

convex in then f2 is the sum of linear and convex functions, hence it is convex.

Consider now the planner’s problem with labor mobility from Definition 2. Because U is homothetic we can

express it as U = G (U0 (c, h)), where G is an increasing continuous function and U0 is homogeneous of degree 1.

Therefore, imposing the change of variables Uj = LjG
−1 (u), the planner’s problem can be restated as

max
Cj ,

{
Cnj ,L

n
j ,V̄

n
j ,
{
Qn
jk
,κn
jk

}
k∈N(j)

}
,Uj ,Lj

min
j

{
Uj
Lj

}

subject to the convex restrictions (i)-(v) above as well as

Uj ≤ U0 (Cj , Hj) for all j;

The objective function is quasiconcave because
Uj
Lj

is quasiconcave and the minimum of quasiconcave functions is

quasiconcave. In addition, all the restrictions are convex. Arrow and Enthoven (1961) then implies that the Karush-

Kuhn-Tucker conditions are sufficient if the gradient of the objective function is different from zero at the candidate

for an optimum, and here the gradient never vanishes.

Finally, assuming (5) and (6), we have

Qnjkτ
(
Qnjk, G (Ijk)

)
=
δγjk
Iγjk

(
Qnjk

)β+1
,

which is convex if β > γ.

Proposition 2. When the transport technology is given by (5) and (6) , γ > β and there is a single commodity, the

optimal transport network is a disjoint union of trees.

36



Proof. TBC.

Definition 3. The decentralized equilibrium without labor mobility consists of quantities cj , hj , Cj , C
n
j , L

n
j , V̄

n
j ,
{
Qnjk

}
k∈N (j)

,

goods prices
{
pnj
}
n
, pCj , p

H
j in each location j and factor prices wj ,

{
rmj
}
m

in each location j such that:

(i)(a) consumers optimize:

{cj , hj} = arg max
c0j ,h

0
j

U
(
c0j , h

0
j

)
pCj c

0
j + pHj h

0
j = ej ≡ wj + tj ,

where ej are expenditures per worker in j and where pCj is the price index associated with Cj
(
c1j , .., c

N
j

)
at prices{

pnj
}
n

and tj is a transfer per worker located in j. The set of transfers satisfy∑
j

tjLj = Π

where Π adds up the aggregate returns to the portfolio of fixed factors and the government tax revenue,

Π =
∑
j

pHj Hj +
∑
j

∑
m

rmj V
m
j +

∑
j

∑
k∈N (j)

∑
n

tnjkp
n
kQ

n
jk;

(i)(b) firms optimize:

Lnj , V̄
n
j = arg max

Ln0
j ,V̄ n0

j

pnj F
n
j

(
Ln0
j , V̄ n0

j

)
− wjLn0

j −
∑
m

rmj V
mn0
j ;

(i)(c) transport companies optimize

pnk
(
1− tnjk

)
≤ pnj

(
1 + τnjk

)
, = if Qnjk > 0;

(i)(d) producers of final commodities optimize:{
Cnj
}

= arg max
Cn0
j

Cj
({
Cn0
j

})
−
∑
j

pnj C
n0
j ;

as well as the market-clearing and non-negativity constraints (i), (ii), (iv), and (v) from Definition 1.

If, in addition, labor is mobile, then the decentralized equilibrium also consists of utility u and employment {Lj}
such that

Lju = Uj (cj , hj)

whenever Lj > 0, and condition (vii) from Definition 2 holds. If labor is mobile, we further impose equal ownership

across workers regardless of location: bj = 1
L

.

Proposition 3. (First and Second Welfare Theorems) If the sales tax on shipments of product n from j to k is

1− tnjk =
1+τnjk

1+
(
εn
Q,jk

+1
)
τn
jk

then: (i) if labor is immobile, the competitive allocation coincides with the planner’s problem

under specific planner’s weights ωj. Conversely, the planner’s allocation can be implemented by a market allocation

with specific transfers bj; and (ii) if labor is mobile, the competitive allocation coincides with the planner’s problem.

In either case, the price of good n in location j, pnj , equals the multiplier on the balanced-flows constraint in the

planner’s allocation, Pnj .

Proof. Under the tax scheme in the proposition, condition (i)(c) from the market allocation is equivalent to the first-

order condition (7) from the planner’s problem. Without labor mobility, the rest of the allocation corresponds to a

standard neoclassical economy with convex technologies and preferences where the welfare theorems hold. Specifically,

the first-order conditions from the firm optimization problem in the market allocation (i)(b) coincide with the planner’s
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problem letting wj and rmj be the multipliers of the planner’s constraints (iv). Because Cj is homogeneous of degree

1, the first-order conditions over Cnj in the market allocation is pCj
∂Cj
∂Cnj

= pnj . Letting Pnj be the multiplier of

the balanced-flows constraint (ii) in the planner’s allocation, this condition coincides with the planner’s first-order

conditions if Pnj = pnj . Since the market clearing constraints are the same in the market’s and the planner’s allocation,

the planner’s allocation coincides with the market if the planner’s weights are such that the planner’s FOC for Cj

coincide with the market. This is the case if the weight ωj from the planner’s problem equals the inverse of the

multiplier on the budget constraint from the consumer’s optimization problem (i)(a) in the market allocation. To

find that weight, using that U we can write U = G (U0 (c, h)), where U0 is homogeneous of degree 1. Then, the

planner’s allocation coincide with the market’s under weights

ωj =
ej

G′ (U0 (cj , hj))U0 (cj , hj)
,

where ej is the expenditure per worker and cj , hj are the consumption per worker of the traded and non-traded

good in the market allocation. If U is homogeneous of degree one, then ωj = PUj , where PUj is the price index

associated with U (cj , hj) at the market equilibrium prices pCj , p
H
j . In the opposite direction, given arbitrary weights

ωj , the market allocation implements the planner’s under the transfers tj = PCj cj + PHj hj −Wj constructed using

the quantities {cj , hj} from the planner’s allocation and the multipliers
{
PCj , P

H
j

}
and Wj corresponding to the

constraints (i) and (iv) of the planner’s problem, respectively.

For the case with labor mobility, note that adding up the planner’s first-order conditions on cj and hj gives

PHj hj + PCj cj =

(
ω̃j
Lj

)
[UC (cj , hj) cj + UH (cj , hj)hj ]

= Wj −WL

where ω̃j is the multiplier of the labor-mobility constraint (vi) of the planner’s problem, Wj is the multiplier of the

local labor-market clearing constraint (iv) in the planner’s problem, and WL is the multiplier of the aggregate labor-

market clearing constraint (vii) in the planner’s problem. The second equality follows from the first-order condition

with respect to Lj in the planner’s problem. Then, the market allocation and the planner’s solution coincide if, in

the market allocation, ej = wj + Constant, implying tj = Π
L

, as we have assumed.
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