Hierarchical Archimedean Copulae: The HAC Package

Ostap Okhrin Alexander Ristig

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center of Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

What is R?

- R is a language and environment for statistical computing and graphics.
- □ Can be easily extended by installing and loading packages.
- ☑ Popular copula packages: copula or fCopulae.
- ☑ HAC novel features:
 - estimation of the parameters and the structure of Hierarchical Archimedean Copula (HAC),
 - graphical visualization.

Firefox 💌			
😨 CRAN - Package HAC	+		
HAC: Estin Archimedea	mation, simulation and visualization of Hierarchical		
Package provides the estimation of the structure and the parameters, simulation methods and structural plots of high-dimensional Hierarchical Archimedean Copulae (HAC).			
Version:	0.2-0		
Depends:	R (≥ 2.14.0), <u>copula</u>		
Imports:	graphics, <u>stabledist</u>		
Published:	2012-04-20		
Author:	Ostap Okhrin and Alexander Ristig		

Figure 1: CRAN Website

Copula

Definition (Copula)

A *d*-dimensional copula *C* is a joint cumulative distribution function on $[0, 1]^d$ with standard uniform marginal distributions.

Theorem (Sklar, 1959)

Let F be a joint distribution function with margins F_1, \ldots, F_d . Then there exists a copula $C : [0,1]^d \to [0,1]$ such that, $\forall x_1, \ldots, x_d \in \overline{\mathbb{R}} = [-\infty, \infty]$,

$$F(x_1,...,x_d) = C\{F_1(x_1),...,F_d(x_d)\}.$$

If the margins are continuous, then C is unique; otherwise C is uniquely determined on $\operatorname{Ran} F_1 \times \ldots \times \operatorname{Ran} F_d$, where $\operatorname{Ran} F_i = F_i(\mathbb{R})$ denotes the range of F_i .

Archimedean copula

Definition (Multivariate Archimedean copula)

A d-dimensional Archimedean copula $C:[0,1]^d \rightarrow [0,1]$ is defined as

$$C(u_1,\ldots,u_d)=\phi\left\{\phi^{-1}(u_1)+\cdots+\phi^{-1}(u_d)\right\},\,$$

where $\phi : [0, \infty) \rightarrow [0, 1]$ is a completely monotone Archimedean copula generator with $\phi(0) = 1$, $\phi(\infty) = 0$. Example 1

Family	$\phi(u, \theta)$	Parameter range	Independence
Gumbel	$\exp\left(u^{1/ heta} ight)$	$ heta\in [1,\infty)$	heta=1
Clayton	$(u+1)^{-1/\theta}$	$ heta\in(0,\infty)$	_

Gumbel, Emil Julius on BBI:

Proposition (Genest and Rivest, 1993)

Let X_1 and X_2 be continuous r.v. with unique Archimedean copula C generated by ϕ . Then Kendall's τ is given by

$$\tau(X_1, X_2; \theta) = 1 + 4 \int_0^1 \frac{\phi^{-1}(t, \theta)}{(\phi^{-1})'(t, \theta)} dt.$$

Kendall, Maurice George on BBI:

Example 2

 $\begin{array}{l} \mathsf{Gumbel:} \ \tau\left(\cdot,\cdot;\theta\right) = 1 - 1/\theta \\ \mathsf{Clayton:} \ \tau\left(\cdot,\cdot;\theta\right) = \theta/\left(\theta+2\right) \end{array}$

1-6

HAC

Example 3

3-dimensional fully nested HAC:

 $C(u_{1}, u_{2}, u_{3}, \boldsymbol{\theta}) = \phi_{\theta_{(12)3}} \left[\phi_{\theta_{(12)3}}^{-1} \circ \phi_{\theta_{12}} \left\{ \phi_{\theta_{12}}^{-1} \left(u_{1} \right) + \phi_{\theta_{12}}^{-1} \left(u_{2} \right) \right\} + \phi_{\theta_{(12)3}}^{-1} \left(u_{3} \right) \right]$

Figure 2: Structure of 3-dim HAC

Motivation

Example 4

4-dimensional partially nested HAC:

Figure 3: Structure of 4-dim HAC

1 - 8

Portfolio Management

- HAC can be applied to VaR estimation or assessing diversification effects.
- ⊡ Four stocks: CVX, FP, RDSA and XOM.
- ⊡ 2011-02-02 to 2012-03-19

> price = read.table("stocks")
> ret = diff(log(price), 1)

- Residuals of ARMA-GARCH models res
- ☑ Non-ellipticity? Joint extreme events?

> pairs(ret, pch = 20)

 $1_{-}9$

Motivation

Figure 4: Dependencies of CVX, FP, RDSA and XOM

 ${\tt R}$ and ${\tt HAC}$

□ Copula estimation based on uniformly distributed margins ures

```
> result = estimate.copula(ures)
> plot(result)
```


Figure 5: Estimated HAC of the portfolio

Outline

- 1. Motivation \checkmark
- 2. Estimation
- 3. hac object
- 4. Graphics
- 5. Simulation
- 6. ECDF
- 7. Density
- 8. Summary

 $\max\{\hat{\theta}_{12},\hat{\theta}_{13},\hat{\theta}_{14},\hat{\theta}_{23},\hat{\theta}_{24},\hat{\theta}_{34}\}=\hat{\theta}_{13}\quad\Rightarrow\quad$

Estimation

- ☑ 3 computational blocks:
 - 1. Specification of the margins
 - 2. Estimation of the parameters and the structure
 - 3. Optional aggregation of the binary HAC
- \boxdot Two estimation procedures: QML and Kendall's $\tau.$
- estimate.copula returns a hac object.

> result1 = estimate.copula(res, margins = "edf") > plot(result1)

epsilon = 0.3 leads to a non-binary structure

```
> result2 = estimate.copula(X = res,
+ type = 1, method = ML, epsilon = 0.3,
+ agg.method = "mean", margins = "edf")
> plot(result2)
```


Figure 7: Results of the modified estimation

Objects of the class hac

- ⊡ hac and hac.full create objects of the class hac.
- □ hac.full cannot construct partially nested AC.
- Consider a 5-dimensional fully nested Gumbel HAC:

```
> G1 = hac.full(type = 1,
+ y = c("X1", "X2", "X3", "X4", "X5"),
+ theta = c(1, 1.01, 2, 2.01))
> G1
Class: hac
Generator: Gumbel
((((X5.X4)_{2.01}.X3)_{2}.X2)_{1.01}.X1)_{1}
```


hac object ·

□ It is smarter to aggregate the variables X1 and X2 in a first node and the variables X3, X4 and X5 in a second node.

>	G2 =	hac(type = 1,			
+		<pre>tree = list(list("X3",</pre>	"X4",	"X5",	2.005),
+		<i>"X2", "X1",</i> 1.005))			

Substituting of variables for lists leads to arbitrary objects

>	GЗ	=	hac(type = 1,
+			<pre>tree = list(list("Y1", "Y2",</pre>
+			<pre>list("Z3", "Z4", 3), 2.5),</pre>
+			list("Z1", "Z2", 2),
+			<pre>list("X1", "X2", 2.4),</pre>
+			" <i>X3</i> ", " <i>X4</i> ", 1.5))

Graphics

> plot(G3)

Figure 8: Structure of object G3

4-1

 $\ensuremath{\mathbb{R}}$ and $\ensuremath{\mathsf{HAC}}$

Figure 9: Colored structure of object G3

Graphics

```
> tree2str(hac = G2, theta = TRUE
+ digits = 3)
[1] ''((X3.X4.X5)_{2.005}.X2.X1)_{1.005}''
> plot(G2, digits = 3, index = TRUE,
+ theta = FALSE)
```


Figure 10: Structure of object G2

Simulation

□ Simulation of HAC requires 2 arguments: the number of generated random vectors and a hac object.

5 - 1

 ${\tt R}$ and ${\tt HAC}$

Distribution Functions

□ pHAC computes the values of copulae.

> cf.values = pHAC(X = sample, hac = G2)

$$\begin{array}{l} \hline \quad \text{emp.copula.self computes the empirical copula, i.e.} \\ \widehat{C}\left(u_1,\ldots,u_d\right) = n^{-1}\sum_{i=1}^n\prod_{j=1}^d\mathsf{I}\left\{\widehat{F}_j\left(X_{ij}\right) \le u_j\right\}. \end{array}$$

-6-1

R and HAC -

Figure 12: Values of cf.values on the x-axis against the values of the ecf.values
R and HAC

ECDF

Figure 13: Runtimes of emp.copula.self for an increasing sample-size but fixed dimension d = 5 plotted on a log-log-scale

Density Functions

d-dimensional copula density

$$c(u_1,\ldots,u_d)=\frac{\partial^d C(u_1,\ldots,u_d)}{\partial u_1\cdots\partial u_d}.$$

□ dHAC returns the values of the analytical density.

Requires a data matrix and a hac object as arguments.

- □ Construction of Likelihood functions by to.logLik.
- □ Random sampling using conditional inverse method.

Conclusions

- HAC provides simple methods for applying hierarchical Archimedean copulae with usual R-syntax.
 - ▶ e.g. dHAC, pHAC and rHAC in combination with a hac object.
- □ Innovative functions estimate.copula and plot.hac.
- □ We are thankful for critique and suggestions.

Hierarchical Archimedean Copulae: The HAC Package

Ostap Okhrin Alexander Ristig

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center of Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

For Further Reading

Marius Hofert (2011)

Efficiently Sampling Nested Archimedean Copulas Computational Statistics & Data Analysis 55, 57–70

嗪 Harry Joe (1997) Multivariate Models and Dependence Concepts Chapman & Hall

Harry Joe (2005)

Asymptotic Efficiency of the Two-Stage Estimation Method for Copula-Based Models Journal of Multivariate Analysis, 94, 401–419

Alexander J. McNeil (2008) Sampling Nested Archimedean Copulas Journal of Statistical Computation and Simulation 78, 567–581

```
Roger B. Nelsen (2006)
An Introduction to Copulas – 2nd ed.
Springer
```

- Ostap Okhrin, Yarema Okhrin and Wolfgang Schmid (2013) On the Structure and Estimation of Hierarchical Archimedean Copulas Journal of Econometrics, 173, 189–204
- Ostap Okhrin and Alexander Ristig (2014) Estimation, Simulation and Visualization of Hierarchical Archimedean Copulae (HAC) available on www.CRAN.R-project.org

