Quantile Regression in Risk Calibration

Shih-Kang Chao
Wolfgang Karl Härdle
Weining Wang
Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

Dependence Risk

Quantile Regression in Risk Calibration \square

Risk Calibration and Quantile Regression

\square Quantification via value-at-risk (VaR)/expected shortfall (ES)
\square Quantile VaR: dependence risk?
\checkmark Parametric VaR: Chernozhukov and Umantsev (2001), Engle and Manganelli (2004)
\square Nonparametric VaR: Cai and Wang (2008), Taylor (2008) and Schaumburg (2010)
\square Parametric CoVaR: Adrian and Brunnermeier (2010)(AB)

Risk Calibration

\square Marginal Expected Shortfall (MES): Acharya et al. (2010)
\square Distressed Insurance Premium (DIP): Huang et al. (2010)

- Go to details

$\square \mathrm{AB}: X_{j}$ and X_{i} are two asset returns,

$$
\mathrm{P}\left\{X_{j} \leq \operatorname{CoVaR}_{j \mid i}^{\tau} \mid X_{i}=\operatorname{VaR}^{\tau}\left(X_{i}\right), M_{t-1}\right\}=\tau
$$

\square Advantages:

- Cloning property
- Conservative property
- Adaptiveness

CoVaR Construction (AB)

$X_{j, t}$ and $X_{i, t}$ are two asset returns. Two linear quantile regressions:

$$
\begin{align*}
& X_{i, t}=\alpha_{i}+\gamma_{i}^{\top} M_{t-1}+\varepsilon_{i, t} \tag{1}\\
& X_{j, t}=\alpha_{j \mid i}+\beta_{j \mid i} X_{i, t}+\gamma_{j \mid i}^{\top} M_{t-1}+\varepsilon_{j, t} \tag{2}
\end{align*}
$$

M_{t} : state variables. $F_{\varepsilon_{i, t}}^{-1}\left(\tau \mid M_{t-1}\right)=0$ and $F_{\varepsilon_{j, t}}^{-1}\left(\tau \mid M_{t-1}, X_{i, t}\right)=0$.

$$
\begin{aligned}
\widehat{\operatorname{VaR}}_{i, t} & =\hat{\alpha}_{i}+\hat{\gamma}_{i}^{\top} M_{t-1} \\
\widehat{\operatorname{CoVaR}}_{j \mid i, t} & =\hat{\alpha}_{j \mid i}+\hat{\beta}_{j \mid i} \widehat{V a R}_{i, t}+\hat{\gamma}_{j \mid i}^{\top} M_{t-1}
\end{aligned}
$$

CoVaR Construction Linear?

Figure 1: Goldman Sachs (GS) and Citigroup (C) weekly returns 0.05 (left) and 0.1 (right) quantile functions. y-axis $=G S$ returns; x-axis $=C$ returns. LLQR lines. Linear quantile regression line. 95% Confidence band. $N=$ 546. Data weekly returns 20050131-20100131.

Nonlinear Dependence

Figure 2: Lehman Brothers (LB) and C weekly returns 0.05 (left) and 0.1 (right) quantile functions. y-axis $=\mathrm{LB}$ returns; x -axis $=\mathrm{C}$ returns. LLQR lines. Linear quantile regression line. 95% Confidence band. $N=546$. Data weekly returns 20050131-20100131.
Quantile Regression in Risk Calibration \square

Nonlinear Dependence

Figure 3: Bank of America (BOA) and C weekly returns 0.05 (left) and 0.1 (right) quantile functions. y-axis $=B O A$ returns; x-axis $=C$ returns. LLQR lines. Linear quantile regression line. 95\% Confidence band.. $N=546$. Data weekly returns 20050131-20100131.

Quantile Regression in Risk Calibration \square

General Specification

\square Nonparametric quantile regression:

$$
\begin{align*}
X_{i, t} & =f\left(M_{t-1}\right)+\varepsilon_{i, t} \tag{3}\\
X_{j, t} & =g\left(X_{i, t}, M_{t-1}\right)+\varepsilon_{j, t} \tag{4}
\end{align*}
$$

M_{t} : state variables. $F_{\varepsilon_{i, t}}^{-1}\left(\tau \mid M_{t-1}\right)=0$ and $F_{\varepsilon_{j, t}}^{-1}\left(\tau \mid M_{t-1}, X_{i, t}\right)=0$.
\square Challenges

- The curse of dimensionality for f, g
- Numerical Calibration of (3) and (4)

Research Questions

\checkmark Measure CoVaR in a nonparametric (semiparametric) way
\square Test the performance of the CoVaR
\square What can one learn from the semiparametric specification?
\square Consequences for econometrical modelling?

Outline

1. Motivation \checkmark
2. Locally Linear Quantile Regression
3. A Semiparametric Model
4. Empirical CoVaR
5. Backtesting
6. Conclusions and Outlook

Locally Linear Quantile Estimation (LLQR)

$\square\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{2}$ i.i.d. bivariate random variables, locally linear kernel quantile estimator estimated as $\hat{l}\left(x_{0}\right)=\hat{a}_{0,0}$:

$$
\begin{equation*}
\underset{\left\{a_{0,0}, a_{0,1}\right\}}{\operatorname{argmin}} \sum_{i=1}^{N} K\left(\frac{x_{i}-x_{0}}{h}\right) \rho_{\tau}\left\{y_{i}-a_{0,0}-a_{0,1}\left(x_{i}-x_{0}\right)\right\} . \tag{5}
\end{equation*}
$$

\square Choice of Bandwidth: Yu and Jones (1998):

$$
h_{\tau}=h_{\text {mean }}\left[\tau(1-\tau) \varphi\left\{\Phi^{-1}(\tau)\right\}^{-2}\right]^{1 / 5}
$$

where $h_{\text {mean }}$: local mean regression bandwidth.

Stabilized Estimator

\square Calculate $X_{(i: n)}$ (order statistics), then perform LLQR on $\{i / n\}_{i=1}^{n}$ and corresponding $Y_{(i: n)}$
$\square \hat{l}(x) \hat{f}_{X}^{-1}(x)$ is a consistent estimator for the conditional quantile in the original X space

Uniform Confidence Band

Theorem (Härdle and Song (2010))
Under regularity conditions,

$$
\begin{aligned}
\mathrm{P}\left[(2 \delta \log n)^{1 / 2}\right. & \left.\left\{\sup _{x \in J} r(x)|\hat{l}(x)-I(x)| / \lambda(K)^{1 / 2}-d_{n}\right\}<z\right] \\
& \rightarrow \exp \{-2 \exp (-z)\},
\end{aligned}
$$

as $n \rightarrow \infty$, where $\hat{l}(\cdot)$ is the solution of (5) and d_{n} is a scaling constant.

Macroeconomic Drivers

Components of M_{t} :

1. VIX
2. Short term liquidity spread
3. Change in the 3 M T-bill rate
4. Change in the slope of the yield curve
5. Change in the credit spread between 10 years BAA-rated bonds and the T-bond rate
6. S\&P500 returns
7. Dow Jones U.S. Real Estate index returns

Change in yields of 3 mon. TB

Figure 4: GS daily returns given 7 market variables and LLQR curves. Data 20060804-20110804. $n=1260 . \tau=0.05$.

Quantile Regression in Risk Calibration \square

Figure 5: GS daily returns given 7 market variables and LLQR curves. Data 20060804-20110804. $n=1260 . \tau=0.05$.
Quantile Regression in Risk Calibration \square

A Semiparametric Model

Partial Linear Model (PLM)

\square The linearity observation (Figure 4,5) implies:

$$
\begin{align*}
& X_{i, t}=\alpha_{i}+\gamma_{i}^{\top} M_{t-1}+\varepsilon_{i, t} \\
& X_{j, t}=\tilde{\alpha}_{j \mid i}+\tilde{\beta}_{j \mid i}^{\top} M_{t-1}+l_{j \mid i}\left(X_{i, t}\right)+\varepsilon_{j, t} \tag{6}
\end{align*}
$$

I : a general function. M_{t} : state variables. $F_{\varepsilon_{i, t}}^{-1}\left(\tau \mid M_{t-1}\right)=0$ and $F_{\varepsilon_{j, t}}^{-1}\left(\tau \mid M_{t-1}, X_{i, t}\right)=0$.
\square Advantages

- Capturing nonlinear asset dependence
- Avoid curse of dimensionality

Figure 6: The nonparametric element of the PLM. y-axis=GS daily returns after filtering M_{t} 's effect. x-axis=C daily returns. The LLQR quantile curve. Linear parametric quantile line. 95% Confidence band. Data 20080625-20081223. $\mathrm{n}=126$ (window size). $h=0.2003 . \tau=0.05$.

Estimation of Partial Linear Model

\square PLM model: Liang, Härdle and Carroll (1999) and Härdle, Ritov and Song (2011)

$$
Y_{t}=\alpha+\beta^{\top} M_{t-1}+I\left(X_{t}\right)+\varepsilon_{t}
$$

\square Consider $[0,1]$ (standard rank space). Dividing $[0,1]$ into a_{n} equally divided subintervals, $a_{n} \uparrow \infty$. On each subinterval, $I(\cdot)$ is roughly constant.

Estimation of PLM QR

Procedure:

1. Linear element β :
$\hat{\beta}=$
$\underset{\beta}{\operatorname{argmin}} \min _{I_{1}, \ldots, I_{a n}} \sum_{t=1}^{n} \rho_{\tau}\left\{Y_{t}-\alpha-\beta^{\top} M_{t-1}-\sum_{m=1}^{a_{n}} I_{m} \mathbf{1}\left(X_{t} \in I_{n t}\right)\right\} ;$
2. Nonlinear element $I(\cdot)$: With data $\left\{\left(X_{t}, Y_{t}-\hat{\alpha}-\hat{\beta}^{\top} M_{t-1}\right)\right\}_{t=1}^{n}$, applying LLQR.

Empirical CoVaR

$\square j$: GS daily returns,
i : C daily returns
Window Size: 126 days (half a year)
Data 20060804-20110804
\square Three types of VaR (CoVaR):

- VaR
- $\mathrm{CoVaR}^{A B}$
- CoVaR ${ }^{P L M}$

Figure 7: CoVaR of $G S$ given the VaR of C. The x-axis is time. The y-axis is the GS daily returns. PLM CoVaR . AB (2010) CoVaR . The linear QR VaR of GS. Quantile Regression in Risk Calibration

Empirical CoVaR

Figure 8: CoVaR of GS given the VaR of C during 20080804-20090804. The x-axis is time. The y-axis is the GS daily returns. PLM CoVaR. AB (2010) CoVaR. The VaR of GS.

Quantile Regression in Risk Calibration \square

Backtesting Procedure

\checkmark Berkowitz, Christoffersen and Pelletier (2011): If the VaR calibration is correct, violations

$$
I_{t}= \begin{cases}1, & \text { if } X_{i}<\left(\widehat{\operatorname{Co}) V a} R_{t-1}^{\tau}\left(X_{i}\right)\right. \\ 0, & \text { otherwise }\end{cases}
$$

should form a sequence of martingale difference

Figure 9: The timings of violations $\left\{t: I_{t}=1\right\}$. The circles are the violations of the $\widehat{C o V a R}{ }_{G S \mid C, t}^{P L M}$, totally 95 violations. The squares are the violations of $\widehat{\operatorname{CoVaR}}{ }_{G S \mid C, t}^{A B}$, totally 98 violations. The stars are the violations of $\widehat{V a R}_{G S, t}$, totally 109 violations. $n=1260$.

Box Tests

$\boxtimes \hat{\rho}_{k}$ be the estimated autocorrelation of lag k of violation $\left\{I_{t}\right\}$ and N be the length of the time series.
\square Ljung-Box test:

$$
\begin{equation*}
\mathrm{LB}(m)=N(N+2) \sum_{k=1}^{m} \frac{\hat{\rho}_{k}^{2}}{N-k} \tag{7}
\end{equation*}
$$

\checkmark Lobato test:

$$
\begin{equation*}
\mathrm{L}(m)=N \sum_{k=1}^{m} \frac{\hat{\rho}_{k}^{2}}{\hat{v}_{k k}} \tag{8}
\end{equation*}
$$

CaViaR Test

\square Inspired by Engle and Manganelli (2004)
\square Berkowitz, Christoffersen and Pelletier (2011): CaViaR performs best overall
\square Test procedure:

$$
I_{t}=\alpha+\beta_{1} I_{t-1}+\beta_{2} V_{a} R_{t}+u_{t}
$$

where $V_{a} R_{t}$ can be replaced by CoVaR_{t} in the case of conditional VaR . The residual u_{t} follows a Logistic distribution.
\square The null hypothesis is $\hat{\beta}_{1}=\hat{\beta}_{2}=0$.

Summary of Backtesting Procedure

$\square \operatorname{LB}(1)$: Ljung-Box test of lag 1
\square LB(5): Ljung-Box test of lags 5
$\square \mathrm{L}(1)$: Lobato test of lag 1
$\square \mathrm{L}(5)$: Lobato test of lags 5
\square CaViaR-O: CaViaR test, all data 20060804-20110804
\square CaViaR-C: CaViaR test, data 20080804-20090804

Table 1: Goldman Sachs VaR/CoVaR backtesting p-values.

Measure	LB(1)	LB(5)	L(1)	L(5)	CaViaR-O	CaViaR-C
Panel 1						
$\widehat{V a R}_{G S, t}$	0.3449	0.0253*	0.3931	0.1310	$<0.0001^{* * *}$	0.0024**
Panel 2						
$\widehat{\mathrm{CoVaR}}_{G S \mid S P, t}^{A B}$	0.0869	0.2059	0.2684	0.6586	<0.0001***	0.0424*
$\widehat{C O V a R}^{P L S M \mid S P, t}$	0.0518	0.0006***	0.0999	0.0117*	$<0.0001^{* * *}$	0.0019**
Panel 3						
$\widehat{\operatorname{CoVaR}} A B \mid C, t$	0.0489*	0.2143	0.1201	0.4335	$<0.0001^{* * *}$	0.0001***
$\widehat{C o V a r ~}^{P L M} \mid C, t$	0.8109	0.0251*	0.8162	0.2306	<0.0001***	0.0535

$*, * *$ and ${ }^{* * *}$ denote significance at the 5,1 and 0.1 percent levels.

Conclusions and Outlook
 Conclusions and Outlook

\checkmark Semiparametric PLM does well during financial crisis
\square Nonlinear tail dependence is not negligible
\square Multivariate nonlinear part in PLM

Quantile Regression in Risk Calibration

Shih-Kang Chao
Wolfgang Karl Härdle
Weining Wang
Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

Macroprudential Risk Measures

\square Marginal Expected Shortfall (MES): Portfolio $R=\sum_{i} w_{i} X_{i}$ where w_{i} : weights, X_{i} : asset return, $0<\tau<1$,

$$
\operatorname{MES}_{\tau}^{i}=\frac{\partial E S^{\tau}(R)}{\partial w_{i}}=-\mathrm{E}\left[X_{i} \mid R \leq-\operatorname{Va}_{\mathrm{R}} R_{R}^{\tau}\right]
$$

\square Distressed Insurance Premium (DIP): Huang et al. (2010) $L=\sum_{i=1}^{N} L_{i}$ total loss of a portfolio

$$
D I P=\mathrm{E}^{Q}\left[L \mid L \geq L_{\text {min }}\right]
$$

Advantages of CoVaR

\checkmark Cloning Property: if dividing X_{i} into several clones, then the value of CoVaR conditioning on the individual large firm does not differ from the one conditioning on one of the clones
\square Conservative Property: CoVaR conditioning on some bad event, the value would be more conservative than VaR
\square Adaptive to the changing market conditions

Nonlinear Dependence

Figure 10: BOA and GS weekly returns 0.05 (left) and 0.1 (right) quantile functions. y-axis=BOA returns; x-axis=GS returns. LLQR lines. Linear parametric quantile regression line. 95% Confidence band. $N=546$.

Nonlinear Dependence

Figure 11: LB and AIG weekly returns 0.05 (left) and 0.1 (right) quantile functions. y-axis=LB returns; x-axis=AIG returns. LLQR lines. Linear parametric quantile regression line. 95% Confidence band. $N=546$.

References

國 Acharya, V. V., Pedersen, L. H., Philippon, T., and Richardson, M.

Measuring systemic risk,
Working paper 10-02 (2010), Federal Reserve Bank of Cleveland.
冨 Adrian, T. and Brunnermeier, M. CoVaR, Staff Reports 348 (2011), Federal Reserve Bank of New York

References

Berkowitz, J. W., P. Christoffersen and D. Pelletier Evaluating Value-at-Risk Models with Desk-Level Data Management Science, forthcoming
园
Cai, Z. and Wang, X.
Nonparametric estimation of conditional VaR and expected shortfall,
J. of Econometrics (2008) 147:120-130

References

围
Carroll, R. and Härdle, W.
Symmetrized nearest neighbor regression estimates
Statistics and Probability Letters (1989), Vol. 26, pp. 271-292.
围 Chernozhukov, V. and L. Umantsev, Conditional value-at-risk: Aspects of modeling and estimation Empirical Economics (2001) 26:271-292.

References

Engle, R. and Manganelli, S.
CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,
J, of Business and Economic Statistics (2004) 22:367-381
Härdle, W. and S. Song
Confidence bands in quantile regression
Econometric Theory (2010) 26:1180:1200

References

Eärdle, W., Y. Ritov and S. Song
Partial Linear Quantile Regression and Bootstrap Confidence Bands
J. of Multivariate Analysis, forthcoming

E Huang, X., Zhou, H. and Zhu, H.
Systemic risk contributions
Staff working papers 2011-08, The Federal Reserve Board
围 Liang, H., W. Härdle and R. J. Carroll
Estimation in a Semiparametric Partially Linear
Errors-in-Variables Model
The Annals of Statistics (1999) 27(5): 1519-1535.
Quantile Regression in Risk Calibration

References

國 Schaumburg, J.
Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory
SFB Working Paper (2010)
Taylor, J. W.
Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall Journal of Financial Econometrics (2008) 6:382-406.
© Yu, K. and Jones, M.C.
Local Linear Quantile Regression, Journal of the American Statistical Association (1998) 98:228-237

