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Motivation 1-1

Dependence Risk

Quantile Regression in Risk Calibration
●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



Motivation 1-2

Risk Calibration and Quantile Regression

� Quanti�cation via value-at-risk (VaR)/expected shortfall (ES)

� Quantile VaR: dependence risk?

� Parametric VaR: Chernozhukov and Umantsev (2001), Engle
and Manganelli (2004)

� Nonparametric VaR: Cai and Wang (2008), Taylor (2008) and
Schaumburg (2010)

� Parametric CoVaR: Adrian and Brunnermeier (2010)(AB)
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Motivation 1-3

Risk Calibration

� Marginal Expected Shortfall (MES): Acharya et al. (2010)

� Distressed Insurance Premium (DIP): Huang et al. (2010)
Go to details

� AB: Xj and Xi are two asset returns,

P
{
Xj ≤ CoVaRτj |i

∣∣∣Xi = VaRτ (Xi ),Mt−1

}
= τ.

� Advantages:
I Cloning property
I Conservative property
I Adaptiveness

Go to details
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Motivation 1-4

CoVaR Construction (AB)

Xj ,t and Xi ,t are two asset returns. Two linear quantile regressions:

Xi ,t = αi + γ>i Mt−1 + εi ,t , (1)

Xj ,t = αj |i + βj |iXi ,t + γ>j |iMt−1 + εj ,t . (2)

Mt : state variables. F
−1
εi,t

(τ |Mt−1) = 0 and F−1εj,t
(τ |Mt−1,Xi ,t) = 0.

V̂aR i ,t = α̂i + γ̂>i Mt−1,

ĈoVaR j |i ,t = α̂j |i + β̂j |i V̂aR i ,t + γ̂>j |iMt−1.

Quantile Regression in Risk Calibration
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Motivation 1-5

CoVaR Construction Linear?
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Figure 1: Goldman Sachs (GS) and Citigroup (C) weekly returns 0.05 (left)

and 0.1(right) quantile functions. y-axis=GS returns; x-axis=C returns.

LLQR lines. Linear quantile regression line. 95% Con�dence band. N =

546. Data weekly returns 20050131-20100131.
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Motivation 1-6

Nonlinear Dependence

●●

●●

●
●

●

●●

●

●
●
● ●
●

●

●
●●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

● ●●●

●

●●

●

●

●

●

●

●
●

●●●
●

●
●

● ●● ●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

● ●

●

●● ●

●

● ●

●
●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●
● ●

●

●

●●●

●

●●

●
●●

●

●
●

●

●
●

●

● ●

●
●

●
●

●

●●

●
●● ●

●

●

●

●
●
●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●●

●
●●

●●

●
●

●●

●

● ●

●●
●

●

●●
●

●●
● ●

●
●

●
●

●●
●

●

●

●

●

●●● ●●
●

●

●
●●

●
●

●
● ●● ●

●
●

●

●●

●

●●●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●●

●
●
●

●
●

●●
●

●●
●

●

●

●
●●

●●
●●●●

●●

●●
●● ●

●●
●

●●
●
●

●
●●
●●

●●
●●

●

●
●

● ●
●●
●

●
●
●

●

●

●
●
●●

●●
●

●
●
●
●

●
●●

●

●●
●
●●●

●
● ●

●●●●●●●
●●

●
●
●●●●
●●●●●●
●
●●
●●

●●

●
●●

●●●●
●

●

●
●
●
●●●●●●●
●

●
●●●●●

●
●

●●●
●
●

●●●●●
●

●
●● ●●●

●
●●●

●

●●
●

●
●●●
●●
●

●

●

●

●

●

●
●
●

●●
●

●●

●●
● ●

● ●

●●
● ●
●●●

●
●●

●●

●

●
● ●● ●
● ●

●
●●

●●

●

●
●
●

●
●

●

●

●
●

●
●

● ●●
● ●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●
●●

●
●

●●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

0.0 0.5

−1
.0

−0
.5

0.
0 ●●

●●

●
●

●

●●

●

●
●
● ●
●

●

●
●●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

● ●●●

●

●●

●

●

●

●

●

●
●

●●●
●

●
●

● ●● ●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

● ●

●

●● ●

●

● ●

●
●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●
● ●

●

●

●●●

●

●●

●
●●

●

●
●

●

●
●

●

● ●

●
●

●
●

●

●●

●
●● ●

●

●

●

●
●
●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●●

●
●●

●●

●
●

●●

●

● ●

●●
●

●

●●
●

●●
● ●

●
●

●
●

●●
●

●

●

●

●

●●● ●●
●

●

●
●●

●
●

●
● ●● ●

●
●

●

●●

●

●●●

●

●

●
●

●

●

●

●
●●

●

●

●
●
●
●

●●

●
●
●

●
●

●●
●

●●
●

●

●

●
●●

●●
●●●●

●●

●●
●● ●

●●
●

●●
●
●

●
●●
●●

●●
●●

●

●
●

● ●●●
●
●
●
●

●

●

●
●
●●

●●
●

●
●
●
●

●
●●

●

●●
●
●●●
●

● ●

●●●●●●●
●●

●
●
●●●●
●●●●●●
●
●●
●●

●●

●
●●

●●●●
●

●
●

●
●
●●●●●●●
●

●
●●●●●

●
●

●●●
●
●

●●●●●
●

●
●● ●●●

●
●●●

●

●●
●

●
●●●
●●
●

●

●

●

●

●
●
●
●

●●
●

●●

●●
● ●

● ●

●●
● ●
●●●

●
●●

●●

●

●
● ●● ●
● ●

●
●●

●●

●

●
●
●

●
●

●

●

●●
●

●
● ●●

● ●

●
●● ●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●
●●

●
●

●●

●●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

0.0 0.5

−1
.0

−0
.5

0.
0

Figure 2: Lehman Brothers (LB) and C weekly returns 0.05 (left) and

0.1(right) quantile functions. y-axis=LB returns; x-axis=C returns. LLQR

lines. Linear quantile regression line. 95% Con�dence band. N = 546.

Data weekly returns 20050131-20100131.
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Motivation 1-7

Nonlinear Dependence
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Figure 3: Bank of America (BOA) and C weekly returns 0.05 (left) and

0.1(right) quantile functions. y-axis=BOA returns; x-axis=C returns.

LLQR lines. Linear quantile regression line. 95% Con�dence band..

N = 546. Data weekly returns 20050131-20100131.
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Motivation 1-8

General Speci�cation

� Nonparametric quantile regression:

Xi ,t = f (Mt−1) + εi ,t ; (3)

Xj ,t = g(Xi ,t ,Mt−1) + εj ,t . (4)

Mt : state variables. F
−1
εi,t

(τ |Mt−1) = 0 and

F−1εj,t
(τ |Mt−1,Xi ,t) = 0.

� Challenges
I The curse of dimensionality for f , g
I Numerical Calibration of (3) and (4)

Quantile Regression in Risk Calibration
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Motivation 1-9

Research Questions

� Measure CoVaR in a nonparametric (semiparametric) way

� Test the performance of the CoVaR

� What can one learn from the semiparametric speci�cation?

� Consequences for econometrical modelling?

Quantile Regression in Risk Calibration
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Outline

1. Motivation X

2. Locally Linear Quantile Regression

3. A Semiparametric Model

4. Empirical CoVaR

5. Backtesting

6. Conclusions and Outlook



Locally Linear Quantile Regression 2-1

Locally Linear Quantile Estimation (LLQR)

� {(Xi ,Yi )}ni=1 ⊂ R2 i.i.d. bivariate random variables, locally

linear kernel quantile estimator estimated as l̂(x0) = â0,0:

argmin
{a0,0,a0,1}

N∑
i=1

K

(
xi − x0

h

)
ρτ {yi − a0,0 − a0,1(xi − x0)} . (5)

� Choice of Bandwidth: Yu and Jones (1998):

hτ = hmean

[
τ(1− τ)ϕ{Φ−1(τ)}−2

]1/5
,

where hmean: local mean regression bandwidth.

Quantile Regression in Risk Calibration
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Locally Linear Quantile Regression 2-2

Stabilized Estimator

� Calculate X(i :n) (order statistics), then perform LLQR on
{i/n}ni=1 and corresponding Y(i :n)

� l̂(x)f̂ −1X (x) is a consistent estimator for the conditional
quantile in the original X space
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Locally Linear Quantile Regression 2-3

Uniform Con�dence Band

Theorem (Härdle and Song (2010))

Under regularity conditions,

P

[
(2δ log n)1/2

{
sup
x∈J

r(x)|̂l(x)− l(x)|/λ(K )1/2 − dn

}
< z

]
→ exp{−2 exp(−z)},

as n→∞, where l̂(·) is the solution of (5) and dn is a scaling

constant.
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A Semiparametric Model 3-1

Macroeconomic Drivers

Components of Mt :

1. VIX

2. Short term liquidity spread

3. Change in the 3M T-bill rate

4. Change in the slope of the yield curve

5. Change in the credit spread between 10 years BAA-rated
bonds and the T-bond rate

6. S&P500 returns

7. Dow Jones U.S. Real Estate index returns

Quantile Regression in Risk Calibration
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A Semiparametric Model 3-2
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Figure 4: GS daily returns given 7 market variables and LLQR curves. Data

20060804-20110804. n = 1260. τ = 0.05.
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Figure 5: GS daily returns given 7 market variables and LLQR curves. Data

20060804-20110804. n = 1260. τ = 0.05.

Quantile Regression in Risk Calibration
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A Semiparametric Model 3-4

Partial Linear Model (PLM)

� The linearity observation (Figure 4, 5) implies:

Xi ,t = αi + γ>i Mt−1 + εi ,t ;

Xj ,t = α̃j |i + β̃>j |iMt−1 + lj |i (Xi ,t) + εj ,t . (6)

l : a general function. Mt : state variables. F
−1
εi,t

(τ |Mt−1) = 0

and F−1εj,t
(τ |Mt−1,Xi ,t) = 0.

� Advantages
I Capturing nonlinear asset dependence
I Avoid curse of dimensionality

Quantile Regression in Risk Calibration
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Figure 6: The nonparametric element of the PLM. y-axis=GS daily re-

turns after �ltering Mt 's e�ect. x-axis=C daily returns. The LLQR quan-

tile curve. Linear parametric quantile line. 95% Con�dence band. Data

20080625-20081223. n=126 (window size). h =0.2003. τ = 0.05.
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A Semiparametric Model 3-6

Estimation of Partial Linear Model

� PLM model: Liang, Härdle and Carroll (1999) and Härdle,
Ritov and Song (2011)

Yt = α + β>Mt−1 + l(Xt) + εt .

� Consider [0, 1] (standard rank space). Dividing [0, 1] into an
equally divided subintervals, an ↑ ∞. On each subinterval, l(·)
is roughly constant.
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A Semiparametric Model 3-7

Estimation of PLM QR

Procedure:

1. Linear element β:

β̂ =

argmin
β

min
l1,...,lan

n∑
t=1

ρτ

{
Yt − α− β>Mt−1 −

an∑
m=1

lm1(Xt ∈ Int)

}
;

2. Nonlinear element l(·): With data
{(Xt ,Yt − α̂− β̂>Mt−1)}nt=1, applying LLQR.
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Empirical CoVaR 4-1

Empirical CoVaR

� j : GS daily returns,
i : C daily returns
Window Size: 126 days (half a year)
Data 20060804-20110804

� Three types of VaR (CoVaR):
I VaR
I CoVaRAB

I CoVaRPLM
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Figure 7: CoVaR of GS given the VaR of C. The x-axis is time. The y-axis

is the GS daily returns. PLM CoVaR . AB (2010) CoVaR . The linear QR

VaR of GS.
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Empirical CoVaR 4-3
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Figure 8: CoVaR of GS given the VaR of C during 20080804-20090804.

The x-axis is time. The y-axis is the GS daily returns. PLM CoVaR . AB

(2010) CoVaR . The VaR of GS.
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Backtesting 5-1

Backtesting Procedure

� Berkowitz, Christo�ersen and Pelletier (2011): If the VaR
calibration is correct, violations

It =

{
1, if Xi < ̂(Co)VaR

τ

t−1(Xi )
0, otherwise.

should form a sequence of martingale di�erence
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Backtesting 5-2

2007 2008 2009 2010 2011

 

 

Figure 9: The timings of violations {t : It = 1}. The circles are the vi-

olations of the ĈoVaR
PLM

GS|C ,t , totally 95 violations. The squares are the

violations of ĈoVaR
AB

GS|C ,t , totally 98 violations. The stars are the viola-

tions of V̂aRGS,t , totally 109 violations. n = 1260.
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Backtesting 5-3

Box Tests

� ρ̂k be the estimated autocorrelation of lag k of violation {It}
and N be the length of the time series.

� Ljung-Box test:

LB(m) = N(N + 2)
m∑
k=1

ρ̂2k
N − k

(7)

� Lobato test:

L(m) = N

m∑
k=1

ρ̂2k
v̂kk

(8)
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Backtesting 5-4

CaViaR Test

� Inspired by Engle and Manganelli (2004)

� Berkowitz, Christo�ersen and Pelletier (2011): CaViaR
performs best overall

� Test procedure:

It = α + β1It−1 + β2VaRt + ut ,

where VaRt can be replaced by CoVaRt in the case of
conditional VaR. The residual ut follows a Logistic distribution.

� The null hypothesis is β̂1 = β̂2 = 0.

Quantile Regression in Risk Calibration
●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



Backtesting 5-5

Summary of Backtesting Procedure

� LB(1): Ljung-Box test of lag 1

� LB(5): Ljung-Box test of lags 5

� L(1): Lobato test of lag 1

� L(5): Lobato test of lags 5

� CaViaR-O: CaViaR test, all data 20060804-20110804

� CaViaR-C: CaViaR test, data 20080804-20090804
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Backtesting 5-6

Table 1: Goldman Sachs VaR/CoVaR backtesting p-values.

Measure LB(1) LB(5) L(1) L(5) CaViaR-O CaViaR-C

Panel 1

V̂aRGS,t 0.3449 0.0253* 0.3931 0.1310 <0.0001*** 0.0024**

Panel 2

ĈoVaR
AB

GS|SP,t 0.0869 0.2059 0.2684 0.6586 <0.0001*** 0.0424*

ĈoVaR
PLM

GS|SP,t 0.0518 0.0006*** 0.0999 0.0117* <0.0001*** 0.0019**

Panel 3

ĈoVaR
AB

GS|C ,t 0.0489* 0.2143 0.1201 0.4335 <0.0001*** 0.0001***

ĈoVaR
PLM

GS|C ,t 0.8109 0.0251* 0.8162 0.2306 <0.0001*** 0.0535

*, ** and *** denote signi�cance at the 5, 1 and 0.1 percent levels.
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Conclusions and Outlook 6-1

Conclusions and Outlook

� Semiparametric PLM does well during �nancial crisis

� Nonlinear tail dependence is not negligible

� Multivariate nonlinear part in PLM

Quantile Regression in Risk Calibration
●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



Quantile Regression in Risk Calibration

Shih-Kang Chao

Wolfgang Karl Härdle

Weining Wang

Ladislaus von Bortkiewicz Chair of
Statistics
C.A.S.E. - Center for Applied Statistics
and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

1

http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de


Appendix 7-1

Macroprudential Risk Measures

� Marginal Expected Shortfall (MES): Portfolio R =
∑

i wiXi

where wi : weights, Xi : asset return, 0 < τ < 1,

MESiτ =
∂ESτ (R)

∂wi

= −E [Xi |R ≤ −VaRτR ]

� Distressed Insurance Premium (DIP): Huang et al. (2010)
L =

∑N
i=1 Li total loss of a portfolio

DIP = EQ [L|L ≥ Lmin]
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Appendix 7-2

Advantages of CoVaR

� Cloning Property: if dividing Xi into several clones, then the
value of CoVaR conditioning on the individual large �rm does
not di�er from the one conditioning on one of the clones

� Conservative Property: CoVaR conditioning on some bad
event, the value would be more conservative than VaR

� Adaptive to the changing market conditions
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Appendix 7-3

Nonlinear Dependence
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Figure 10: BOA and GS weekly returns 0.05 (left) and 0.1(right) quantile

functions. y-axis=BOA returns; x-axis=GS returns. LLQR lines. Linear

parametric quantile regression line. 95% Con�dence band. N = 546.
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Appendix 7-4

Nonlinear Dependence
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Figure 11: LB and AIG weekly returns 0.05 (left) and 0.1(right) quantile

functions. y-axis=LB returns; x-axis=AIG returns. LLQR lines. Linear

parametric quantile regression line. 95% Con�dence band. N = 546.
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