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Introduction 1-2

Black-Scholes Assumptions

(] continuous trading
[ constant interest rates with flat term structure
[J it is possible to buy/short any number of asset or bond

CJ (from now on we assume also that dividend are 0 )
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Introduction

The asset dynamics is assumed to follow geometric Brownian
motion (GBM)

dsst = rdt + odW;

t
where

W; is standard Wiener process
r interest rate

o constant volatility

S; asset price

IVModelling
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Introduction 1-4

Black-Scholes formula

The price of the European call option is given with:

CB = 5,0(d)) — Ke™""d(dn) ,

1
where dy > = In(st/K?:;iEUZ)T. ®(u) is the CDF of the standard

normal distribution, 7 = T — t time to maturity, K the strike price.

IVModelling w



Introduction 1-5

Binomial trees

Binomial trees are discrete approximation of the GBM
They are powerful tool for pricing options

T
At = — with tg=0, t1 = At, tp =2At, ..., tp,=nAt=T
n
Changes in two directions:
P(up movement is u) = p

P(down movement is d) = q
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Choose p, g and movements u, d such that for At — 0 and
n — 00, Sj41 will follow a geometric Brownian motion:

InSji1 normally distributed
2
E(InSj11) = InS;+ (r— 02> At

Var(InSj11) = o°At
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Introduction

We obtain

pP+q
& pIn(uS;) + qIn(dS;)

p{In(uS;) — E}? + q{In(dS;) — E}?
Put g =1 — p, and we have:

pln (g) +Ind =

i n fn(5))" -

1-7
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1-8

This equation is nonlinear. Introducing a new condition uv-d =1,

the recombination property.
The recombination property yields m; = j + 1 and

SF=Soufd K, k=0, ]

We obtain:

IVModelling



Introduction

Stock Price
A

1-9
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period 1

period 2

Figure 1: The generalized two period binomial model with the un-
derlying asset values at the nodes.
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Introduction

Example: Call option without dividends

IVModelling

stock price S; 230.00
exercise price K 210.00
time of expiration 7 0.50
volatility o 0.25
risk free interest rate r 0.04545
dividend no
steps 5
Call/Put European call

Table 1: data for example (no dividend)
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1. Up movement u: for At =7/n=0.1, u = 1.0823 from (1)

2. Stock price SX: from Sy = 230 we calculate
Si = uSy=248.92 or S? = Sp/u=121252, ---,
S = uPSy = 341.51, §¢ = u3Sy = 291.56, - - -,
S2 = So/ud = 154.90
3. Option price at expiry date: V5 = max(0, Sk — K): e.g.
V= V(52 ts) = S8 — K = 81.561
4. Probability p: from (1), we get p = 0.50898.

5. Calculate option prices \/jk
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option price

341.51

315.55
291.56 291.56

269.40 269.40
248.92 248.92 248.92

230.00 230.00 230.00
212.52 212.52 212.52

196.36 196.36
181.44 181.44

167.65
154.90
0.00 0.10 0.20 0.30 0.40 0.50

Table 2: Stock price tree (no dividend)
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stock price option price

341.50558 131.506
315.54682 106.497
291.56126 83.457 81.561
269.39890 62.237 60.349
248.92117 44.328 40.818 38.921
230.00000 | 30.378 26.175 20.951

212.51708 16.200 11.238 2.517
196.36309 6.010 1.275

181.43700 0.646 0.000
167.64549 0.000

154.90230 0.000
time 0.00 0.10 0.20 0.30 0.40 0.50

Table 3: Option prices (no dividend)
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Black-Scholes PDE

The price of the options can be obtained also by solving PDE:

aC(S, t)

2
(© *C(S.1) , OC(S,1)

052 0S

L %ch(s, £)S2 =rC(S,t) (2)
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Option Markets

[J In modern financial markets vanilla options are regularly
traded on the exchange

(] One may trade simultaneously several options with different
strike price and different maturity

(] The unknown volatility parameter can be obtained from the
market
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Implied volatilities

Volatility 6 as implied by observed market prices Ce:

6: Ci—CB(S,K,r,r,6)=0.
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Implied Volatility Surface

The surface (on day t) given by the mapping from strikes and from
time to maturity 7:
(K, 7) — 0¢(K,T)

is called implied volatility surface (IVS).
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Moneyness

A convenient way of presenting the IVS is to rewrite it as a
function of a moneyness and time to maturity. The moneyness & is
generally defined as:

k=m(t, T,S:, K,r).

where m is the increasing function in K.
From now on we will consider a IVS as function of moneyness x
and time to maturity 7:

(k,T) — T¢(K, T).
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Moneyness

The moneyness can be defined in many different ways:

K
R1 = §t

B K
k2 = Sief™

= In K
k3 = S;erT
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Data Design

Time to maturity
06 08

04

02

06 08 1 12
Moneyness

Figure 2: Data design on January, 4th 1999
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Data Design

Strings shift

e A e

08

06

Time to maturity

04

Moneyness

Figure 3: IV strings on January, 4th 1999 (points) and on January, 13th 1999

(crosses).
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Smile
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Figure 4: An example of the smile
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Term structure

IV term structure

o
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time to maturity

Figure 5: An example of the term structure
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Figure 6: An example of the IV ticks
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IVS Dynamics

L] The IV strings move in space
(] The IVS shifts in time randomly
(] The IVS is subjected to the random deformations
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Local Volatility Models 2-2

Local Volatility Model

The Black-Scholes model cannot replicate the observed vanilla
option prices. Hence it is questionable to apply it for:

[] hedging
(] risk management

L] pricing exotic options
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Local Volatility Models 2-3

Local Volatility Model

Dupire(1994) proposed the model which match observed option
prices. The risk neutral process is set as:

dS.

?f = r(t)dt + o (S, t)dW,
t

where:

r(t) is an instantaneous interest rate

o(S, t) is an deterministic function of the spot and time.

IVModelling w



Local Volatility Models 2-4

Local Volatility Model

For the local volatility (LV) model one can derive the generalized
BS PDE:

av(s,t) t) 1 ,0?V(S,t) ov(s,t)
5 2 a?(S,t)S TS r( )5765 =r(t)V(S,t)
where V/(s, t) is a contingent claim on the asset S
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Local Volatility Models 2-5

Dupire Formula

The link between the local volatility surface (LVS) o(St, t) and the
IVS is given by Dupire formula:

IC(K.T) | rKaCtéﬁ’T)

2 _ oT
o (St’ t) =2 K2 E)QQ(K,T)
OK?
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Overview

1. introduction and definitionsv”
2. implied binomial trees

3. Andersen and Brotherthon-Ratcliffe finite difference method
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Local Volatility Models 2-7

IBT Algorithm

Notations and Assumptions

[ s, i, the stock price of the ith node at the n-th level

L] Forward prices F,; = s, ; x et and transition probabilities

pn,i satisfy the risk-neutral condition:

Fn,i = Pn,iSn+1,i+1 + (1 - pn,i)5n+1,i

L Fni < spy1,i+1 < Fpig1, in order to avoid arbitrage.

[ Arrow-Debreu prices A ; (discounted risk-neutral probability)
the price of an option that pays 1 in one and only one state /
at nth level, and otherwise pays 0.
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Ant1,1 e "2 {(1 = pn1) A1}
)‘n+1,i+1 = eirAt {)\n,ipn,i + )\n,i-‘rl(l - pn,i—i—l)} , 2<i<n
eirAt {)\n,npn,n}

)\n+1,n+1 —

At, length of the time interval.
[J Call option price C(K,nAt) and put option price P(K, n/At)

n+1

C(K,nAt) = Z Ant1,i max(spt1,i — K, 0)
i=1
n+1

P(K, nAt) Z Anti,i max(K — Sn+1,is 0)
i=1

IVModelling w
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Local Volatility Models 2-10

Derman and Kani (D & K) IBT

Step 1: Central nodes
() Define sp11i=s11=S,i=n/24+1,, for n even

[ Start from spy1i, Spt1,i+1, | = (n+1)/2,
2 2
SUPPOSe Sp+1,i = S, ;/Sn+1,i+1 = S°/Snt1,i+1, for n odd

o S{e"™tC(S, nAt) + AniS — pu}
ntl,i+1 = AniFni— eBtC(S, nAt) + py

for = (n+1)/2
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Step 2: Upward

Sty = sni{€ Pt C(sni, ) — pu} — Anisni(Fai — Sni1.i)
m {erBtC(sp i, nAt) = pu} — Ani( Fai — Sny1i)

Step 3: Downward

- Sni+11€ P (sn i nA) — pi} — A isni(Fi — Snt1,i+1)
i {e"BtP(sni, nAt) = pr} + Ani( Fai = Sny1,iv1)

IVModelling w
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where

i—1

n
Pu = Z )\n,j(FnJ - 5n7i)7pl = Z)\n,j(smi - Fn,j)

j=i+1 j=1
Technical Summary for D & K construction:

1. Start from the central nodes, calculate their stock prices

2. Calculate the transition probabilities and Arrow-Debreu prices
at the corresponding nodes

3. Calculate stock prices upward or downward, where
interpolated option prices are estimated by CRR method

4. Repeat 2 and 3
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Example
S =100, r = 3%, the annual BS implied volatility of a call is
o = 10%, the BS implied volatility ¢jmp(K,7) = 0.15 —0.0005K.

Output four-step four-year IBT of stock prices, transition
probabilities, Arrow-Debreu prices respectively:
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Local Volatility Models

D & KIBT
T =1 year, At =1/4 year
stock price

110.05
105.13

100.00 100.00
95.12

89.93

IVModelling

115.07

105.14

95.11

85.21

119.91

110.06

100.00

89.93

80.02




Local Volatility Models

D & KIBT

T =1 year, At =1/4 year
transition probability

0.563

0.589

0.587

0.578

0.563

0.545

0.596

0.590

0.586

0.589

IVModelling
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Local Volatility Models

D & KIBT
T =1 year, At =1/4 year
Arrow-Debreu price
0.111
0.187
0.327 0.312
0.559 0.405
1.000 0.480 0.342
0.434 0.305
0.178 0.172
0.080
0.033
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Local Volatility Models 2-17

Barle and Cakici (B & C) IBT

Major modifications
(] Align the central nodes of the tree with the forward price
rather than with the current stock price

(] Use the forward price of the previous node to calculate the
new option of the nodes at the next level

[J Use Black-Scholes formula instead of CRR binomial tree
method to calculate the interpolated option prices

IVModelling w




Local Volatility Models 2-18

Step 1: Central nodes
[J Define spy1; =511+ €™t =S5.eMAt j=n/241, for n even

[ Start from spy17, Spt1,i+1, 1 = (n+1)/2,
Suppose Spy1,; = F,?,-/s,,H,,-H, for n odd

>\n,iFn,i - A,?7,

Fni——= for i=(n+1)/2
A T AL (n+1)/

Sn+1,i =

IVModelling w




Local Volatility Models 2-19
Step 2: Upward
A,E,'Sn—i—l,i — Mn,iFn,i(Fni — Sn+1,i)
Sp41,i+1 =
A,i,- — An,i(Fni — Snt1,i)

Step 3: Downward

P
An,iFn,i(5n+1,i+1 - Fn ') - A,, iSn+1,i+1

Sn+1,i =
n >\n /(5n+1 i+1 — ) AP
where
NS = ePC(FpinAt) = Y Anj(Frj— Fa),
j=i+1
AP = e PTP(Fy, nAt) — Z)\,,J Fui— Fnj).
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Local Volatility Models

B & CIBT
T =1 year, At =1/4 year
stock price

112.23
104.84

100.00 101.51
96.83

90.53

IVModelling

117.02

107.03

97.73

87.60

123.85

112.93

103.05

93.08

82.00
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Local Volatility Models 2-21

Given an implied tree, the local volatility o is calculated

pij = PijRivijsa+ (1= pij)Rije
ot; = pij(Rivijer — pig)? + (1= pij)(Rijir — pij)’

IVModelling w
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Finite-Difference Approach

(] Practitioners employ finite-difference approach to calibrate the
LVS and price exotic options Andersen and
Brotherton-Ratcliffe (1998)

(] The algorithm provides accurate and stable fit

(] It yields fast pricing algorithms
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Local Volatility Models 2-23

Recall the PDE for pricing the contingent claim V/(S;, t)

ov(s,t) t)

2PV(5,1) aV(S,t)
ot

2(5 05—z~ Tr()5S—53

=r(t)V(S,t)

(3)
with boundary condition V(S7, T) = g(S7).
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Local Volatility Models 2-24

The instantaneous interest rate r is a deterministic function of time

_ —0P(0,t)/0t
=0

where P(t, T) = exp[— ftT r(u)du] is the price of the zero-coupon
bond.

IVModelling w



Local Volatility Models 2-25

For some technical reason in (3) put x = /nS and
H(x,t) = V(S, t) replace the equation with

OH(x, t)
ot

0?H(x, t) OH(x, t)

1
+§V(X’ t) 2 +b(x, t)T

= r(t)H(x, 1) (4)
where b(x,t) = r(t) — 3v(x, t), v(x,t) = 02(S,t) = o(eX, ¢).

The functions have to be calibrated so that the discretzation will
return correct prices market prices of the bonds and European
options.

IVModelling w



Local Volatility Models 2-26

Discretization

Divide the (x, t) plane into a uniformly spaced mesh with M + 2
nodes along the t axis and N + 2 nodes along the x axes:

XN41 — X0

Xi = Xo+IiAx=x0+1 N1l i=0,..N+1
. T .

t = _]At:_]m, j=0.. M+1

Xini = InSjpi = xg

IVModelling w



XN+1

Ax

ot
= H(x;, tj
Hij =

X0

TVESY
J
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Local Volatility Models 2-28

Discretization

OH _ H(xi,ti1) — H(xi, tj)

ot A

oH H(xit1, ) — H(xi-1, 1)) H(xis1, tj11) = H(Xi—1, 1)
ox ~ (1-9) 21, +0 20,
&H - 1-0© H(X;Jrl7 tj) — H(X,'7 tj) + H(X,'_17 tj)

ox2 1-9) A2

H(xi+1, tiv1) — H(xi, tiva) + H(xi—1, tj11)
_|_ e ) A)%J )
(6)

[0 © = 0 - fully implicit finite-difference method
[ © =1 - explicit finite-difference method

[ © = } - Crank-Nicholson scheme
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Plugging discretization schemes to (3) leads to system of equations
written in matrix notation:

[(1+ Al = (1 -0©)MjH; = (6M; +1)H; ;1 +B; (7)

for each j =0,..., M. | is the identity matrix
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hj[(1 = ©)Ho; + ©Ho j11]
0
0
unj[(1 = ©)Hny1j + OHny1j11]

IVModelling .



Local Volatility Models

G, U 0 0 0 0
/271' Cj U 0 0 0
Mj _ . . . :
0o 0 © IN-1j Cn-1j UN-1,
0 0 O 0 Inj  en
where
C,"j = —OzV,"j
1
upj = §Oé(Vi,j + Ab;
1
I,'J = EQ(V,'J - Axbi,j
a = AN

IVModelling
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LI If rj, vij, bjj are known the only unknown the only unknown
quantities are Hy j, ..., Hy ;.

(] Because from the payout at time T the vector Hy,1 is known
the solution of the whole system can be obtained iterative
backward induction.

[ Numerical solution can be coded very efficiently
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Fitting of Bond Prices

The bonds prices are described by

P(t, T2)

P(T1, T) = P(t.Th)

For each time j the price is “given” on the market P; = P(0, t;)
Then

P(tj, tir1)(1 + r;A¢) = P(tj41, tjr1) = 1

and

IVModelling .
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Fitting European Call Options

(1 Assume the existence of observable call prices on the all nodes

(1 Denote C,'n’J, the value of a European call with strike
K = S; = €% and maturity t;.

[] Let A:;’I be an Arrow-Debreu security that pays 1 if at the
time t; the asset price is equal S; and zero otherwise.
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Local Volatility Models

The Arrow-Debreu securities must satisfy
N+1
ij _
Z Alnl P
N+1
Z A:;,j,s = S/nl
The call prices needs to satisfy

N+1

I=i+1
fori=1,..,Nand j=0,...M+1

IVModelling
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Local Volatility Models

For the lower and upper boundary

N+1,j _
CMi =0

N+1 N+1

Cﬁ,’f = Z A;,’;'.;S/ - S0 Z A:,’,J, = Sini — SoP;
=0 =0

forj=0,....M+1.

IVModelling
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Local Volatility Models

After some calculations:

W (5 S )G (S~ S)C (S - $)Cy
" (Si+1 = Si)(Si — Si-1)
e_%AXC,-;J,-rl’j 2cosh $A, C",,’{—!—efAXC' L
- 2e%i smh §Ax

fori=1,..,Nand j=1,... M+1
For the upper boundary
CNJ
A'J — ini
ini (eAx _ 1)6‘XN

For the lower boundary
Aid — PJ'eAX "+ Cl}‘l’lj/exo

ini Ay -1

For the j =0 A% = 1if i = 8 and A% = 0 otherwise

mni mi

IVModelling
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Arrow-Debreu securities must satisfy (7). After some algebraic
calculations one obtains:

. ; p. . .
M)T(1—0)A oAl Y= L AT A (8)
mi mi R]—‘,—]_ mi mi

where
1
Aé”"-
) A
i ini
N.j
Aini

M; contains the v;.

Solving (8) wrt. v; yields the local volatilities.
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Models 3-2

Black-Scholes model

In Black-Scholes model price of the asset is modelled with:

2

S. = Soexp(c W, + (r — %)r), t>0

where:

S; is the asset’s price in time point t

Sp is the asset’s price in a current time point (t = 0)
r is an interest rate

W; is a standard Wiener process

o is a volatility
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Models 3-3

Option price in Black-Scholes model

In Black-Scholes model one can derive price for the call option as:

C(So, K, 7,r) = So®(y +0V/T) — e "d(y)

where s L
log 2 + (r — 30°)7
o\ T

®(+) is standard normal distribution function.
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Put-call parity of European option: for a put and a call with the
same expiry, the same strike price and based on the same
underlying, it holds that

P=C-S +Ke (T

where C is the call price and P the put price at t, r is the risk-free
interest rate.
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Parameters of the option price:

So value of underlying asset

K exercise price or strike price

r interest rate

T time to maturity

- o volatility

IVModelling
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Models 3-6

So and r are values taken from the market.

K and 7 are specified in the option contract.

o is unknown parameter which measures incertainity of future
changes of price. It is often estimated as standard deviation from
returns:
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Implied volatility

On the market the prices of derivatives are determined by the law
of supply and demand. It means that C(So, K, 7, r) is observed.
In Black-Scholes formula for call option price only o is not
obeserved

C(So0, K, 7,r) = So®(y + o/7) — e " d(y)
_log 24 (r—1o?)r

oNT
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Implied volatility

Since the option price is a monotonic function of volatility it is
possible to find unique parameter o, such that match the equation:

CBS(SO, K,r,r,o1) = C"(K,T)

where

CB5(So, K, T,r,0)) is a price given with Black-Scholes formula
C*(K, ) is the price obcerved in the market

oy is called implied volatility.
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Models 3-9

Since the Black-Scholes formula is complicated the implied
volatility is not given explicitly One needs to use numerical
techniques to obtain the result.

Prices on the option market are commonly quoted in terms of
Black-Scholes implied volatility. Black-Scholes formula is not used
as a pricing model but as a tool for representing prices in terms of
implied volatility.
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Models 3-10

In Black-Scholes model o is assumed to be constant. In real
markets implied volatilities exhibit non constant behavior.

If we denote the implied volatility by o/(K, T) then the surface
01(K, T)k,7 contains the implied volatility for all strikes and
maturities.

On the option market we can observe only few point from this
surface.
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Figure 7: Implied volatility surface




Models 3-12

Merton model

In Merton model the price of an asset is modelled as:

N
S: = Spexp{yt + oW, + Z Yi}
i>1
W, is standard Wiener process
N; is Poisson process with intensity A independent from W,
Y; ~ N(u,8°) are i.i.d independent from W; and N;
y=r— G = A2 1)

IVModelling .



Models 3-13
In Black-Scholes model generated implied volatility surface is
constant what is in contradiction with observed option prices.

In Merton model generated implied volatility surface is not
constant and replicate the behavior of option prices more realistic.

Implied volatility in Merton model

Figure 8: Implied volatilities genereted in Merton model Q
smilemerton.xpl
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http://www.quantlet.com/mdstat/codes/sfe/smilemerton.html
http://www.quantlet.com/mdstat/codes/sfe/smilemerton.html

Models 3-14

Calibration problem

In order to use Merton model efficiently (for risk managment or
pricing exotic options) one needs to specify set of parameters

(N, 0,0, ).
- X intensity of jumps
- o volatility
- ¢ standard deviation of jumps
- 1 mean of jumps

The specyfing the set of parameters is called calibration of the
model.
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In calculating implied volatilities in Black-Scholes model one has
one option and one parameter. The solution is unique.

In calibration of the Merton model there are more options and four
parameters. The solution does not need to be unique.

The idea of calibration is to search for model parameters that
minimize the distance between the IVS of the model and an IVS
observed on the market.
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Minimizing function

Cr

i 1

o) = GO s BioPMO

where:
© is the set of parameters (A, 0,0, 1)
C?, Pr call/put option prices from the market

CM(©), PM(©) option prices calculated with Merton model with
parameters ©
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Models

Estimated parameters of the Merton model:

- A =0.950717
- & =0.100115
- 5 =10.119883
- i =—0.109419
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Models 3-18

Time to maturity T=0.3288

04

2000 2500 3000 3500

Figure 9: Implied volatility of calibrated Merton model. Blue points
denote which options were taken into calibration
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Problems with efficient calibration

There are several problems how to effiiently and accuratly calibrate
parameters of the Merton

- Option pricing function needs to be called many times. Monte
Carlo pricing function works too slow so using it in calibration
is not reasonable.

- The parameters’ space has four dimensions. It is hard to tell
anything about minimizing function.
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Fast method of option pricing

Carr, Madan proposed a method for option valuation based on the
fast Fourier transform(FFT).
Some motivations for the use of FFT:

- the considerable power of the FFT

- the Fourier transform of the (logarithm of the) price process is
known for many models specially models based on Lévy
processes like Merton model

- FFT allows to calculate prices for a whole range of strikes
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Pricing a single call

The value Ct(k) of a T-maturity call with strike K = exp(k) is
given by

Cr(k) = /koo e T (e° — eX)gr(s)ds

where gt is the density of the log price St.
As the function Ct is not square-integrable we cannot apply the
Fourier inversion directly. Thus we consider the modified function

cr(k) = exp(ak) Cr(k)

which should be square-integrable for a suitable oo > 0.
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The Fourier transform of cr is defined by

Y(v) = / ekt (k)dk.
The Fourier transform ¢ can be expressed as well:

e To(v — (a+1)i)
Y = e v e+ D

where ¢ is the Fourier transform of gr.

Example

22 22
In Merton model ¢(u) = e~ “2 HivuttAt(e™" /2tinu 1)

Ny=r— "72 —/\(e”+52/2—1)

where:
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As cT is square-integrable we can get back the call price by
applying the inverse Fourier transform

Cr(k) = 2P0 / " ey (v)dv

s

The call price can be computed numerically using the trapezoid
rule

Z

-1

eXp( Oék) Wje_ivjk¢(\/j)17

™

Cr(k) =

I
o

where v; = nj, j=0,..., N —1 with some > 0.
WoZWN_lz%and W1:...:WN_2:1
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Pricing calls with different strikes

Let us consider now N calls with maturity T and strikes
1
ku:—EN)\—i—)\u, u=0,...,N—1

where A > 0 is the distance between the log strikes.
The formula for the numerical approximation of the call price gives

2

-1
k, T
Cr(ky) = exp(ﬂa) vnge_"\”f”e'%’v)‘"fw(vj)n, u=0,...,N—1.

.
Il
o
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This representation allows a direct application of the FFT which is
an efficient algorithm for computing the sum

=

-1
« 27 -
ak = e*'Wkaj,kzo,...,N—l.

.
Il
<}

The parameters A, 7, N only have to satisfy the constraint

_271'

A\n =
TN

If we choose 7 small in order to obtain a fine grid for the numerical
integration, then we observe call prices at relatively large strike
spacings, with few strikes lying in the desired region near the stock
price.
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FFT versus MC

FFT time: 0.015 sec.
MC time: 36.531 sec. (5000 simulations, 500 time steps)
disadvantages of FFT

- instable for fixed FFT parameter o, n, N

- applicable only to european options
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Searching for minimum

In order to find parameters of the model one needs to minimize
numericaly appropriate function.

The minimizing function could have many local minimums what
makes the problem more difficult.

The performance of the method can also depends on starting
values of the algorithm. There is no rule how to set the starting
point.
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Simulated annealing

Simulated annealing is a numerical algorithm for finding a global
minimum of a function. Each step of the algorithm is adjusted by
adding some random variable with variance T. After certain
amount of function calls T is decreased and algorthm is restarted
from the best ever point. There is a hope that due to random
adjustment the algorithm will jump out of the local minimium
valey and find valey with global minimum.
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Merton model is not good when we think about whole surface that
is why even more comlicated models need to be consider.
Estimated parameters of the Merton model for six different
maturietes:

~

- X = 0.096349
- & =0.127587

-6 =0.17323

- fi = —0.568271

IVModelling .



Models

IVModelling

04

03

0.2

01

L

Time to maturity T=0.0795

OQOOOOOOOOOOO

3500

3-31



Models

IVModelling

04

03

0.2

01

.

Time to maturity T=0.1562

OoOOOOOOOOO

2000

2500

3000

3500

3-32



Models

Time to maturity T=0.3288
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Time to maturity T=0.5781
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Time to maturity T=0.8274
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Wiener process

(i) Wo=0
(i) We ~ N(0,t), t >0

(iii) {Ws; t > 0} has independent increments: W, — W is
independent from W, Vit >s>0

(iv) (We— W) ~ N(O,(t —s))
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Wiener process

05
i

-05
!

Figure 10: Typical paths of Wiener process @ genwiener.xpl
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http://www.quantlet.com/mdstat/codes/sfe/genwiener.html
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Poisson process

Exponential distribution is the distribution with density )\e)‘xlng

Let 7; be a sequence of independent exponential random variables
with parameter A and T, = " ;7.
The process (N, t > 0) defined by

Nt = Z ltzT,,

n>1

is called Poisson process with intensity A.
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Poisson process

Figure 11: Typical paths of Poisson process @ genpoiss.xpl
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http://www.quantlet.com/mdstat/codes/sfe/genpoiss.html

3-41

Models

Compound Poisson process

A compound Poisson process with intensity A is a stochastic
process X; defined as:
Nt
X=3%
i>1

where:
Y; are i.i.d. with distribution f and N; is a Poisson process with

intensity A. N; is independent from Y.
When Y; = 1 we obtain standard Poisson process.
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Compound Poisson process

Figure 12: Typical paths of compound Poisson process with stan-
dard normal distribution of jump size @ gencpoiss.xpl
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http://www.quantlet.com/mdstat/codes/sfe/gencpoiss.html
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Simple Lévy process can be created from independent Brownian
motion with drift and diffusion coefficient (yt + aW; ) and
compound Poisson process C;

Xt:’}/t+3Wt+Ct
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T ey

05
i

Figure 13: Typical paths of Lévy process composed from Brownian
motion with drift and compound Poisson process @ genlevy.xpl
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http://www.quantlet.com/mdstat/codes/sfe/genlevy.html
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Lévy process

A stochastic process (X¢)¢>0 in R is called Lévy process if :
(i) (X¢) has independent and stationary increments.

(i) Xo =0

(iii) (Xt) has cadlag trajectories.

Examples:

- combination of Brownian motion with drift and compound
Poisson process

- processes with infinite number of jumps
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Simulation

Although Lévy processes allow to build more realistic models we
need to pay a price for increased complexity of computation. In
application we can rarely use analytical methods for option pricing
so numerical methods are unavoidable.

In order to apply Lévy processes one need to have efficient
simulation methods.
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Monte Carlo for stochastic processes

For stochastic processes one needs to simulate many trajectories of
the process and obtain estimates of densities or quantiles.
Each trajectory is approximated on the discrete number of points.
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Computer representation of stochastic process

Set a grid of / + 1 time points on the interval [ty, T] :
to<ti<..<tj=T

where t; = tog+ it for i=0,1,...,0 and 7 = (T — to) /.

For each point t; set value of the process X;,. The set of values
Xy, Xt1, -, X, One trajectory of the process.

Repeat this procedure M times to obtain M trajectories of the
process.
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1 1 1 1 1
. BT B Sl
Xto X t1 Xt2 th 1 th
M M M M M
X to X t1 X [} X tj—1 Xfl

Each row represents approximation of one trajectory.

Each column represents approximation of distribution of the
process in particular time point.
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140
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Figure 14: 10 paths of simulation of asset prices in Black-Scholes

Q Bstrajectories.
Ir{]/ﬁ/l%edle”ingBStraJ ectories.xpl @



http://www.quantlet.com/mdstat/codes/sfe/BStrajectories.html
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In order to calculate option price with Monte Carlo method
generate sufficiently many trajectories of the possible asset's prices.
Set the option price as a discounted value of the mean of the
payoff.

cMC (k) Zmax 5{l K,0)

where: S{, is a simulated price of the asset in time point t; = T
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Simulation of Wiener process

- divide time interval [0, T] in / + 1 fixed time points
O=t<ti<..<ty=T

-set Wp=0

- simulate / standard normal variables Ny, ..., N,
- set AW; = N;/ti — ti—1

- set Wy, = S0 AW

- repeat whole procedure M times
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Simulation of Poisson process

Since the process (N, t > 0) is defined by
Ny = Z ltZ Th
n>1
the algorithm for simulation is following:

divide time interval [0, T] in / 4 1 fixed time points
O=ty<ti<..<tp=T andset Ng =0

simulate Ty from exp()\) while K, T, < T
set Ny, = sup{k : Zjlle T < ti}

repeat whole procedure M times
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Simulation of Poisson process

Improved algorithm

- divide time interval [0, T] in / + 1 fixed time points
O=ty<ti<..<tp=T andset Ng =0

simulate Ty from Poiss(AT) the number of jumps N

simulate N uniformly distributed variables on the interval
[0, T] (They correspond to to the jumps time)

set Ny, = sup{k: Z}‘Zl Uy < ti}

- repeat whole procedure M times
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The improved algorithm for simulating Poisson process is based on
two properties

- the number of jumps on the interval [0, T] has Poisson
distribution with parameter AT

- Conditionally on Nt the exact moments of jumps on the
interval [0, T] have the same distribution as Nt independent
random numbers uniformly distributed on this interval. They
need to rearranged in increasing order.
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Simulation of compound Poisson process

- divide time interval [0, T] in / + 1 fixed time points
O=ty<thi<..<ty=T andset (=0

- generate total number of jumps N and jump times
J1, b, ..., Jy like in Poisson process case

- simulate N random variables Y7, Y2, ..., Yy from the given
distribution ¥

- set Gy, = ZJNO Y; where Yo =0

- repeat whole procedure M times
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Simulation of simple Lévy process

A simple Lévy process with characteristic triplet (a, v,)
Xt:’yt+aWt+Ct

can be approximated with following algorithm

divide time interval [0, T] in / + 1 fixed time points
O=t<thi<..<tp=T andset Xop =0

generate Wiener process W;: and compound Poisson process
Ce

set th. == ath. + Cti + ’Y(t, - tif]_)

repeat whole procedure M times
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Monte Carlo for Merton model

In Merton model:

Nt
S = Spexp{X:} = Spexp{yt+ o W; + Z Yi}

i>1
one has simple Lévy process as a sum of Wiener process with drift
and compound Poisson process.
Using techniques for simulation of simple Lévy processes it is easy
to obtain simulated path of asset’s prices in Merton model by
simple exponential transformation.
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Building and simulating other Lévy process

Not every Lévy process can be obtained as simple sum of
compound Poisson process and Wiener process with drift.

There is a huge class of Lévy processes that have infinitely many
jumps. Most of them are not easily tractable and therefore they
can hardly be applied. However there are some particular cases
where this kind of processes can be taken into consideration.
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Building Lévy Processes

There are three convenient ways to define Lévy processes in
parametric way.

- subordinating Brownian motion with independent Lévy process
- directly specifying measure

- specify the density of increments in a given time scale as
infinitely divisible density
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Subordination

The Lévy process S; with monotonic increasing paths is called
subordinator.

Let (0, p, b) be a generating triplet for S;. Then for each u <0
moment generating function of S; has a form:

E(euSt) —_ etl(u)

where:

I(u) = bu+ [;°(e"* —1)p(dx) is called Laplace exponent
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Subordination

Let X;: be a Lévy processes with triplet (a, r,) and characteristic
exponent W(u) and S; is subordinator with Laplace exponent /(u)

and triplet (0, p, b).

def s
The process Y; = Xs, is Lévy processes.

It's characteristic function is given by:
E(eiuYt) — etl(W(v))
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Subordination

It is also possible to find the triplet (a¥,vY,~vY) of Y;.

Y = ba
VY(B =bv(B)+ [y p pX(B)p(ds)
= by + fo (ds) fx|<1 ps (dx)
where
pf is the probability distribution of X;

IVModelling

3-63



Models 3-64

Since we need to specify pX the Brownian motion is a natural
candidate for X;.

We will construct new Lévy processes by subordination of Wiener
process with drift 1 and volatility o

Ly = o Ws, + puS;
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Generating the subordinated Brownian motion

Since many processes are based on Brownian subordination it is
important to know how to simulate them.
Algorithm for simulating subordinated Brownian motion.

divide time interval [0, T] in / 4 1 fixed time points
O=ty<ti<..<t;=T andset Xg =0

simulate the increments of subordinator AS; = 5, — S, |

simulate / standard normal variables Ny, ..., N,
set AX; = oN;/AS; + nAS;, where o is volatility u is a drift
set Xp, = >4 _q AXy

IVModelling w




Models 3-66
Example
Consider the Lévy measure of the form:

Cef)\x

p(X) = 10
where ¢ and X are positive.
Probability density of such a process is given as:

)\ct

) = Frgy e oo

This process is called gamma process and is a subordinator.
Brownian subordination of gamma process is called variance
gamma process.
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Example
Consider the Lévy measure of the form:

where ¢ and \ are positive.
Probability density of such a process is given as:

Pt(X) _ X%Zef/\xfwc%2/x+2ct\/alx>o
This process is called inverse gaussian process and is a
subordinator.

Brownian subordination of inverse Gaussian process is called
normal inverse Gaussian process.
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Stable process

Stable distribution is the distribution with characteristic function:

—o®|t|*{1 — iBsign(t)tan 5} + ipt, o #1,
log ¢(t) =
~olt|{1 + iBsign(t)2 log|e]} + int, a=1

Stable processes are process with stable distribution. For o = 2
stable process is a Brownian motion.
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Generalized hyperbolic process

Probability density function of generalized hyperbolic distribution
has a form:

p(x) = C(8% + (x — u)2) 34Ky 3 (ay/02 + (x — p)2)Plx )

(a2—B2)N/2
27ra>‘*1/26>‘K>\(6\/a27ﬁ2)
Lévy process (X;) is called Generalized Hyperbolic Lévy Motion,
when Xj has generalized hyperbolic distribution.
Remark
Let (X;) be a Generalized Hyperbolic Lévy Motion. Then X;
doesn’t need to have for t # 1 generalized hyperbolic distribution.

where: C =
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Calibration Problem 4-2

Risks in option pricing |

Model risk:

Different models can have the same plain vanilla prices but
significantly varying exotics prices.

(see e.g. [Schoutens et al. (2004)] or [Cont (2005)])
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Risks in option pricing |l

Calibration risk:
A model calibrated to plain vanillas with respect to different error
functionals can lead to significantly varying exotics prices although

the plain vanilla prices are similar.

How should the error be measured?
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Questions about calibration risk

(] How big is calibration risk?

[J Which factors influence calibration risk?
L] option type
L] time to maturity
L1 goodness of fit of the model

[ Model risk < — > calibration risk
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Overview

motivationv’
model and data

calibration

OO OO

exotic options
[l up and out calls
[] down and out puts
[1 cliquets
L1 model risk

[J conclusion
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The Heston model

The price process is given by

ds.

st = pdt + /VedWV
t

where the volatility process is modelled by a square-root process:

dV, = £(n — Vi)dt + 0/ VedW®

and W1 and W? are Wiener processes with correlation p.
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The Heston model |l

The volatility process (V;) remains positive if

02

577>3
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0.06

Figure 15: Implied volatility surface of the Heston model for & =
1.0, n=10.15, p=—-0.5, § =0.5 and vy = 0.1.
(Left axis: time to maturity, right axis: moneyness)
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The Bates model

In this model, the price process is given by
ds.
St
dVe = £&(n— Vi)dt + 0/ VedW®

= pdt +/VedW 1 dz,

where Z is a compound Poisson process.

This model extends the Heston model and has three more

parameters.

IVModelling

4.9



Calibration Problem 4-10

Figure 16: Implied volatility surface of the Bates model for A =
05 6 =02 k=-01, £ =10 n=0.15 p=—-05 60=05
and vp = 0.1. (Left axis: time to maturity, right axis: moneyness)
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Data

- Eurex settlement volatilities of European options
- underlying : dax

- time period: April 2003 - March 2004

- risk free interest rate: Euribor

- no explicit dividends because dax is performance index
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Data Il

Arbitrage:
The implied volatility surfaces have been preprocessed by a method
of [Fengler (2005)] in order to eliminate arbitrage.

liquidity:
Only options with moneyness m € [0.75,1.35] for small times to
maturity T < 1 have been considered because of illiquidity.
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mean number mean number mean money-
of maturities  of obervations ness range
short maturities 3.06 64 0.553
(025 < T < 1.0)
long maturities 5.98 76 0.699
(1.0<T)
total 9.04 140 0.649

Table 4: Description of the implied volatility surfaces.
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Figure 17: DAX and ATM implied volatility with 1 year to maturity
on the trading days from 01 April 2003 to 31 March 2004.
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Error functionals |

For the minimization we consider the following four objective
functions based on the root weighted square error:

n
absolute prices: AP dof Z w;(Pmed — pmar)2

\ i=1

n

relative prices: RP déf\ Z W,'(T)2
i=1 !

mod mar
pmod _ pr
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Error functionals Il

absolute iv: Al % Z w;(IVmed — jymar)2
i=1

n

/V'mod — |y mar
relative iv: Rl def Z Wi(W)z
i=1 !

where mod refers to a model quantity and mar to a quantity

observed on the market, P to an OTM price and /V to an implied
volatility.
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Weights

def 1
wp =

i
Nmat Nsty

where n,,;; denotes the number of maturities and n;'t, denotes the

number of strikes with the same maturity as observation i.

(calibration design)
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Calibration method

The error functionals are minimized with respect to the model
parameters by a global stochastic minimization routine.

The plain vanilla prices are calculated by a method of Carr and
Madan that is based on the FFT.
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mean | AP RP Al RI
objective fct. [E7?] [E7?] [E~?]
AP 73 9.7 0.81 3.1
RP 11. 6.1 0.74 2.9
Al 94 73 0.68 2.6
RI 88 7.0 0.70 25

Table 5: Calibration errors in the Heston model for 51 days.
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3 n 0 p Vo
AP | 0.87 0.07 0.34 -0.82 0.07
(0.48) (0.02) (0.08) (0.08) (0.02)
RP | 1.38 0.07 0.44 -0.74 0.08
(0.35) (0.02) (0.06) (0.03) (0.02)
Al 1.32 0.07 0.43 -0.77 0.08
(0.40) (0.02) (0.06) (0.04) (0.02)
RI 1.20 0.07 0.41 -0.75 0.08
(0.35) (0.02) (0.06) (0.05) (0.02)

Table 6: Mean parameters (std.) in the Heston model for 51 days.
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mean | AP RP Al RI
objective fct. [E7?] [E7?] [E~?]
AP 7.0 13 0.76 2.8
RP 12. 51 0.67 2.6
Al 89 64 0.60 2.3
RI 8.7 6.2 0.62 2.2

Table 7: Calibration errors in the Bates model for 51 days.
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4-24

§

4]

AP | 0.92

RP | 1.56

Al 1.43

RI | 1.36

(0.50) (0.02)
(0.47)  (0.02)
(0.44) (0.02)

(0.44) (0.02)

0.07
(0.03)
0.05
(0.03)
0.06
(0.03)
0.05
(0.04)

0.08
(0.06
0.08
(0.06
0.09
(0.04
0.08
(0.08

Table 8: Mean parameters (std.) in the Bates model for 51 days.
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Monte Carlo simulation

We generate 1000000 paths by Euler discretization.

We approximate the continuous maximum by a discrete maximum
for 250 time steps a year.

T=1 T=2 T=3
[E2] [E7?] [E?
up and out calls 0.17 0.10 0.08
down and out puts | 0.18 0.11 0.08
cliquet options 0.06 0.05 0.05

Table 9;: Maximal relative standard error in MC simulations in Heston

model.
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Barrier options

The prices of up and out calls are given by
exp(—rT)E[(ST — K) " 1{m,<p)]

where

def
Mr = max S;.

0<t<T
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Barrier options |l

We consider for the barrier B and the strike K

B=1+T=x0.2
K=1-T=x0.1

where T = 1,2, 3 denotes time to maturity.
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T=3

AR A | | 4

—{ T - ]
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Figure 18: Prices of the up and out calls in the Heston model.
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up and out calls in Heston

two groups: AP and RP,ALRI

- difference between groups bigger for higher time to maturity

AP roughly 5% more expensive than the rest (T = 3)

high variance between AP and RP

small variance between Al and RI
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v HH ,
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Figure 19: Prices of the up and out calls in the Bates model.
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up and out calls in Bates

Qualitative results similar to the results in the Heston model.
But quantitatively more significant, i.e. the differences are bigger.

possible explanations:
- calibration problems (3 more parameters)

- the higher prices in the Bates model imply higher calibation
risk. (connection to model risk)
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Barrier options |1l

We also consider down and out puts with barrier B and strike K

B=1-T=x0.2
K=1+T=x0.1

where T = 1,2, 3 denotes time to maturity.
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down and out puts in Heston

two groups: AP and RP,ALRI

difference between groups bigger for higher time to maturity
AP roughly 4% cheaper than the rest (T = 3)

high variance between AP and the rest

Results similar to up and out call but different sign/direction.

IVModelling w




Calibration Problem 4-34

up and out calls in Bates

Qualitative results similar to the results in the Heston model.
But here calibration risk is not bigger only the variance is higher.
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Cliquet options

The prices of cliquets are given by
exp(—rT) E[H]
where the payoff H is given by

St — St ,
H % min (cg, max(fg Zmln ¢/, max f,,i

Here ¢ (fg) is a global cap (floor) and cé' (fé) is a local cap
(floor) for the period [tj_1, t].
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Cliquet options Il

We consider three periods with t; = 3T (i =0,...,3) and the
caps and floors are given by

Cg = 00

fg =0

c/ =008, i=1,2,3

fi =—0.08, i=1,2,3
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T=3

AlRI - }D] ,,,,,, | + |

RP/RIF |

11
RPIAIF | | |
APIRI |
AP/AI- + | | + + i
APIRP | | | + ]

L L L L L
0.98 1 1.02 1.04 1.06 1.08

Figure 20: Prices of the cliquets in the Heston model.

IVModelling v




Calibration Problem 4-38
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Figure 21: Prices of the cliquets in the Bates model.
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cliquets

two groups: AP and RP,ALRI

difference between these groups than for barriers

Heston: AP roughly 2% more expensive than the rest (T = 3)

Bates: similar to Heston only higher variance

small variance (compared to barriers)
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model risk

The prices in the Bates model are higher than the corresponding
prices in the Heston model for barrier options and lower for cliquets
(for ALL times to maturity and ALL error functionals).

- up and out calls: 4 —14%

- down and out puts: 10 — 20%

- cliquets: 14 — 25%

Results suggest higher model risk than the results of
[Schoutens et al. (2004)].
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Figure 22: Bates prices over Heston prices for up and out calls.
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141 | | i
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Figure 23: Bates prices over Heston prices for down and out puts.
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Figure 24: Bates prices over Heston prices for cliquets.
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model risk Il

Model risk and calibration risk are not independent.
Model risk depends on the error functional minimized.

It is smallest for AP error functional. It is highest for Rl error
functional.
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Conclusion

there is calibration risk
- two groups: AP and RP,AlRI

- calibration risk grows with time to maturity

- calibration risk differs for different option types (barriers >
cliquets)

- calibration risk is bigger for Bates than for Heston
- model and calibration are dependent

- for each product a model and an error functional should be
chosen
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Dynamics of the Implied Volatility
Surface



IVS Dynamics 5-2

Aims

Model and estimate implied volatility surfaces (IVS) for
(] trading
[ hedging of derivative positions

(] risk management.

In these contexts the IVS acts as a very high-dimensional state
variable.
Practice requires a low-dimensional representation of the IVS.
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Challenges

[J Large number of observations (> 2 million contracts, > 5000
observations per day).

B

Data appear in ‘strings’.
(] Strings are not locally fixed, but ‘move’ through the
observation space (expiry effect). @

(] In the moneyness dimension observations may be missing in
certain sub-regions for some dates /.

IVModelling w
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Degenerated Design

IVS Ticks 20000502 Data Design
g_
ol oo mireomm
l}‘ ol
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- e, N
0 5? 0.3
040 04 05 06 07 08 09 1 11 12 13 14
0.16 Moneyness

Figure 25: Left panel: call and put implied volatilities observed on 20000502.
Right panel: data design on 20000502; ODAX, difference-dividend correction
according to Hafner and Wallmeier (2001) applied.
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Purpose

A modelling strategy in terms of a dynamic semiparametric
factor model (DSFM) for the (log)-IVS
Yij (i =day,j = intraday):

L
Yij = mo(Xij) + Zﬁi,/m/(xu) . 9)
=1

Here m;(X; ) are smooth factor functions and (3;  is a multivariate
(loading) time-series.
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Traditional model fit 20000502 Model fit 20000502

Figure 26: Traditional model (Nadaraya-Watson estimator) and
semi-parametric factor model fit for 20000502. Bandwidths for both
estimates hy = 0.03 for the moneyness and h, = 0.08 for the time
to maturity dimension.
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Implied volatilities

Black and Scholes (1973) (BS) formula prices European options
under the assumption that the asset price S; follows a geometric
Brownian motion with constant drift and constant volatility
coefficient o

CBS> = 5.0(dh) — Ke " d(dbh) ,

152)r .
where di o = In(sf/Kz:g% i ®(u) is the CDF of the standard

normal distribution, r a constant interest rate, 7 = T — t time to
maturity, K the strike price.
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Implied volatilities

Volatility 6 as implied by observed market prices Ce:
5: C—CB(S,K,1,r6)=0.

Unlike assumed in the BS model, 6+(K, 7) exhibits distinct,
time-dependent functional patterns across K (smile or smirk),
and a term-structure T — t: Thus §:(K,7) is interpreted as a
random surface: the implied volatility surface (1VS).
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Related work

One strand of literature models IVS ‘slices’ using PCA:
[J Alexander (2001) analyzes fixed strike deviations,

[J Skiadopoulos et al. (1999) explore the smile in different
maturity buckets,

[ Avellaneda and Zhu (1997); Fengler et al. (2002) investigate
the term structure.
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Related work

Recently, a more comprehensive surface perspective is adopted:

[J Fengler et al. (2003) propose a simultaneous decomposition
of maturity groups in a common principal components
framework.

(J Cont and da Fonseca (2002) employ the Karhunen und
Loeve decomposition.

This literature does not properly cope with the degenerated design.
Estimates are necessarily biased.
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The semiparametric factor model

Consider DSFM for the IVS:

L

Yij=mo(Xij)+ > Buumi(Xiy) (10)
=1

Y;j is log IV,i denotes the trading day (i =1,...,/),
j=1,...,J;is an index of the traded options on day i.
my(-) for I =0, ..., L are basis functions in covariables X; j,
and ; are time dependent factors.
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For my(-), I =0,..., L consider two different set-ups in X; :

(A) Xij is a two-dimensional vector containing time to
maturity 7;; and forward moneyness, k;; = %U)
i.e. strike K divided by futures price
F(tu) = Sti,j exp(rT,.’jT,-L,-)

(B) asin (A) but with one-dimensional X;; that only
contains K ;.

Here, we focus on (A).
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Space and time smoothing

: . ~ ~ s def D
Define estimates of m; and 3;; with (3o = 1, as minimizers of:

I L 2
ZZ/{Y,-J_Z@@,(U)} Ki(u— X)) du, (1)
1=0

i=1 j=1
where K}, denotes a two dimensional product kernel,
Kn(u) = kn,(u1) X kn,(u2), h = (h1, h2) with a one-dimensional
kernel ky(v) = h=1k(h™1v).
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Replace in (21) m; by m; + dg and Bis by Bis + 6. Take derivatives wrt §,
Q1<r<L1<i<lI):

1 1 L
STUBaiu) = D5 BrrBupi(u)i(u), (12)
i=1 i=1 1=0
L

/ G ds = 3 B / Bi(u)my (w)in(u) du,  (13)
1=0

J.
~ 1
piu) = > Ki(u — Xij),
i =
1<
Gi(u) = 7 Z Kn(u = Xij)Yij
1 J:l
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Model characteristics

Consider the case L = 0: the log-implied volatilities Y;; are
approximated by a surface mg not depending on day /. Then,

o) = 2z Kol = Xi)Vi
i - Zi,j Kh(u_Xi,j) )

mo is equal to the Nadaraya-Watson estimate based on the pooled
sample of all days.

IVModelling w



IVS Dynamics 5-17

Model characteristics
Consider a fixed day i and L = 0:,
70 () = ZJ'J;}' Kn(u — Xij)Yij
Zj’:l Kh(u = Xij)

)

Traditional model fit 20000502
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Model characteristics

IVS's are fitted in neighborhoods of the observed design points
X,'J, i.e.

(] we do not fit the surface on the whole design space on each
day (as in a functional PCA (fPCA), Ramsay and Silverman
(1997)).

(] we circumvent global fits and thus avoid large bias effects
caused by the degenerated string design.
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Model characteristics

In fPCA factors are eigenfunctions of a covariance operator. Here,
the norm:

[ Popds,

changes each daAy i, where p;(u) = J! Zf:l Kn(u — Xij).
Eigenfunctions m; may not be nested for increasing L:

Hence, the m; cannot be calculated iteratively, i.e. by moving from
L — 1 components to L components, and so forth.
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Model characteristics

In the DSFM framework the IVS's are approximated by surfaces
moving in the function space

L
{ﬁqo—l—Za/fﬁ/ Do1,...,0q € R}.
1=1

The estimates m; are not uniquely defined: they can be replaced
by estimates that span the same affine space.

Natural choice: orthogonalize m; in an appropriate function space.
Order the resulting functions according to maximum variance in 3,.
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Orthogonalization

Replace:
mo by mie =nmg—~ T 1m
m by mmrew=r"12m
B by B =r2(5 411y
where:

= (., )T B = (Bigs o Bit) T B(u) = 2500 Bilu)
[is (LxL) matrix with [y = [ my(u)my(u)p(u)du
7 is (Lx1) vector with v, = [ mo(u)my(u)p(u)du.
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Figure 27: The average density p(u)
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Ordering

Define matrix B with B; y = Z;Zl B;’,§;7,/ and Z = (z1,...,21)

where z1,...,z; eigenvectors of B.
Replace:

moby me=ZTm

Bi by B,-"eWZZTBi

5-23

The orthonormal basis 71, ..., My is chosen such that S1_ 32, is

maximal and given [3; 1, mg, m1 the quantitiy Z;Zl /32, is maximal

and so forth.
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Algorithm

The algorithm exploits equations (12) and (13) iteratively:
1. for an appropriate initialization of
BO =10 1=1,...,L
get an initial estimate of m(®) = (g, ..., m;)"
2. update Bfl), i=1,...,1,
3. estimate m(V).
4. go to step 2.
until minor changes occur during the cycle.

Optimization implemented in XploRe, @ DSFM.xpl, Hardle et al.
(2000).
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Data Overview
Min.  Max. Mean Median Stdd. Skewn. Kurt.
T. to mat. 0.028 2.002 0.142 0.086 0.166 3.658 21.449
Moneyness. | 0.287 3.367 0.996 0.997 0.114 0.686 12.026
v 0.040 0.799 0.297 0.265 0.105 1.289 4.489

Table 10: Summary statistics from 199901 to 200302. Source: EU-

REX, ODAX, stored in the SFB 649 FEDC.

Ji = 5200 observations per day

total time series has / =~ 1000 days.

N = IJ; = 2.8 million contracts,
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Model selection

For a data-driven choice of bandwidths we propose a weighted AlC since the
distribution of observations is very unequal:

L
— 1 ~ 2L
Zaa =y DoAY =Y Bumi(Xi)) Y w(Xis) exp{ ; Kn(0) / w(u)du},
i 1=0
alternatively (computationally easier):

= fW(u)du
=AIC = NZ{Y,J Zﬁ,/m/ s exp{—Kh(O)ﬂ}

wis a given weight function. Putting w(u) = 1 delivers common AIC, putting
w(u) = (o) 8ive equal weight everywhere.
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Model selection
For the model size (L) selection use the:
| ~—J; L 5 -~
i Y = Y B (Xiy)}?
- I Ji \
i (Yij—=Y)?
where Y denotes the overall mean of the observations.

L[ 1-RV(L) ARV

RV(L)

1] 0.9638

2| 09739 0.0101
3] 0.9822 0.0083
4| 0.9830 0.0007

Table 11: Explained variance for the model size.
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Estimation Results

We fit the model for L = 3, i.e. there are
[J one invariant basis function mg and
[J 3 ‘dynamic’ basis functions my, mp, m3
[J 3 time series of {3;}/_, with / =1,2,3

The bandwidths were chosen according to AI/C2 criterion:
hy = 0.03, h, = 0.02
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Figure 28: =4,c, dependence on the bandwidths.
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Figure 29: Invariant basis function mg and dynamic basis function
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Figure 31: The dynamic basis function my
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Figure 32: DAX and time series of weights 51
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Figure 33: Time series of weights 32 and 53



IVS Dynamics 5-35

Correlogram for 31, 32 and 33

Sample autocorrelation function (acf; Sample autocorrelation function (acf;
i ot Sample autocorrelation function (ach) - L (2
= 5 % 5
Sample partial_autocorrelation function (pact) Sample partial autocorrelation funciion (pact) Sample partial autocorrelation function (pach)
| |

Figure 34: acf and pacf of@l, 32 and 33 respectively
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Testing for random walk

coeff. lag suggested
differences  break date  test-value

B 7 2001.11.09 -1.33

B 2 2001.11.09 -1.09
3 -1.04

B 2 1099.06.08 -3.42%

Table 12: Unitroot test in the presence of structural break. Critical
values for rejecting the hypothesis of unit root are -2.88 at 5%
significance level and -3.48 at 1% significance level. (*) indicate
significance at 5% level. Lane et al. (2002)
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We model first differences of Bl, 32 and level 33 in the form

Yt = (AB\l? A//8\27 B?:)T

Yt =v+ A]_ Yt_]_ + A2 Yt_2+7 ceey +Ap Yt—p + &t

Ye = (Y1t,- .., Yie) " are vectors of the k = 3 endogenous
variables
v = (v1,...,0x)" is a vector of intercept terms, A; are

(K x K) coefficient matrices

€¢ Is a white noise with covariance matrix X, > 0
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Order Selection Criteria

In(FPE) _ AIC SC HQ

-24.34 -15.83 -15.81 -15.82
-24.61 -16.10 -16.04 -16.07
-24.66 -16.15 -16.05*%  -16.11
-24.68 -16.17 -16.03 -16.11*
-24.68 -16.17 -15.98 -16.10
-24.69 -16.16 -15.94 -16.08
-24.70*  -16.18* -15.91 -16.08
-24.69 -16.18 -15.87 -16.06
-24.69 -16.17 -15.82 -16.04

o~ AW RO
0

Table 13: VAR Lag Order Selection. * indicates lag order selected

by the criterion up to a maximum order 8. We chose to apply a
VAR(2) as indicated by the SC criterion.
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A@t
AﬁAzt
ﬂ3t

VAR model for first difference levels, (Aﬁl, ABg,Bg)T

IVModelling
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Model Stability

Time invariance of the model has been evaluated through the roots
of the characteristic polynomial for the VAR(2) model as well as
coefficient stability through the cumulative sum of squares of the
residuals.

roots modulus

0.97 0.97

—0.27 0.4/ 0.48
0.04 £0.2/ 0.27
-0.23 0.23

Table 14: Roots of characteristic polynomial for the VAR(2): stabil-
ity condition is satisied since no root lies outside the unit circle.
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Model Stability

CUSUM-square statistic:

2
St . Zr k+1 W
T
Zr:k+1 Wr2
Wr2 (recursive residuals) is the square one-period ahead prediction
error. r =k +1,..., T ( k, the number of regressors including a

constant and T, sample size.

We plot S, together with significance level lines E[S,] + Cp, the
statistical "boundaries”. Cy depends on T — k and the significance
level desired, see Harvey (1990).
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- CUSUM - Square Test: (5%) - CUSUM - Square Test: (5%)
- = B - = I
& 20 ) o 20 )

a0 60 a0 60
Time: 1999:4-2003:3 Time: 1999:4-2003:3

Figure 35: CUSUM-square statistics for Az; and Az, equation
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Figure 36: CUSUM-square statistics for z3 equation

Coefficient stability is not rejected as all plots lies within the

critical boundaries.

IVModelling
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CUSUM - Square Test: (5%)
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Hedging exotic options

Knock-out options are financial options that become worthless as
soon as the underlying reaches a prespecified barrier.

asset price
100

Figure 37: Example of two possible paths of asset’s price. When the
price hits the barrier (red) the option is no longer valid regardless
further evolution of the price.
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Figure 38: Newspaper advertisement of Sal. Oppenheim’s knock-out
options (source: Frankfurter Allgemeine Zeitung, November 2004)
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Hedging exotic options

In BS world prices of barrier options are given analytically, all
greeks can be calculated directly.
There exists static replication for some barrier option if:

(] the underlying has no drift

(] the IV on the market only depends on time not on strike
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Figure 40: Price of the call knock-out barrier options as a function
of BS-0. Asset value Sqg = 90, strike price K = 80 time to maturity
7 = 0.1 interest rate r = 0.03. Left panel: barrier B = 80. Right
panel: barrier B = 120.
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Example

Consider a short position in a knock-out call option (CK©) with
strike 100 and barrier 90. Consider also one long position in a
European call with strike 100 and a short position in 100/90
European puts with strike 81.

C] if spot is at the barrier level 90 call and put would be worth
the same

O if barrier was not reached before maturity the payoff of CK© is
equal to the payoff of the call

CKO is replicated with vanilla options.
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Value at time t Value at time T
Position hits barrier doesn’t hit barrier
C BSca(K = 100) (St —100)*
—100/90P | —X9BS,, (K = 81) 0
—CKO 0 —(ST —100)*
Sum 0 0

For each time t and each value of ¢ if r =0 and S; = 90 then
BScan(K = 100) = 10 BS,,+(K = 81)
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Dynamic hedging

Use approximation of the option value changes and adjust
constantly the hedge portfolio.

8CKO acKO
KO ~
ACKO(AS, o)~ Z= AS +

The changes in the asset price (delta risk) can be hedge the asset
itself. The changes in volatility (vega risk) can be hedge with
at-the-money plain vanilla call option (C).

Ao
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Dynamic hedging

The sensitivity of the hedge portfolio HP = a1S + aC w.rit. S
and o should be equal to the sensitivity of the CX©. The hedge
coefficients al, a2 are given by the equation:

8CKO
1 2 ai
S o oS
0 2 ~\ acke
< do a 9o
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Local Volatility Model

In local volatility (LV) models the asset price dynamics are
governed by the stochastic differential equation:
dS:

57 = ,U,dt + O'(St, t)th (14)
t

where W, is a Brownian motion, yx the drift and o(S¢, t) the local
volatility function which depends on the asset price and time only.

IVModelling w



IVS Dynamics 5-54

For pricing the options the partial differential equation (18) is
solved. Price depends on the entire IVS. From the IVS one can
calculate G¢(K, T).

Dupire formula:

dC(K,T)

2(S,, t) = 20T +rK
7 Ot 292G (K,T)
K==

C(K,T)
oK

gives the local volatility surface o(St, t).
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Hedging exotic options

Most greeks can be calculated:

2 ~KO
(] Delta, as ,gamma 8822 and theta, 25

from the grid of the finite difference scheme;

KO . KO . .
[ rho, agr , and dividend-rho, %, are typically computed via
a difference quotient assuming a flat term structure.

What about the ve a ”
The usual vega, 8C cannot be used since the entire IVS is input.
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Classical vega hedging

Classical vega hedging corresponds to parallel move of VS
(] In BS there is only one volatility number
[J In LV it protects only of parallel move of the smile (/31 effect)

28.00
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IVS Dynamics

Bucket hedging

With term structure of the IVS one may compute a bucket vega
hedging. It provides a sensitivity measure of parallel movements
over each maturity string.
(] The procedure indicates which European option maturities
should be used for hedging
[] Sensitivity related to strike is not given
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IVS Dynamics

Superbucket hedging

In superbucket analysis one has to compute sensitivity of exotics
w.r.t. a move of each individual implied volatility.

(] Sensitivity by strike and maturity is obtained

(] The calculation needs to be done for each single point
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Vega-hedging of the two DSFM factors

In DSFM the IV decomposition is given only by L + 1 factors:
L ~
o; = exp (Z Bii '7”'/) :
1=0

We can compute the sensitivities w.r.t. the factor loadings B/!
From the interpretations, we receive an immediate understanding
of the sensitivities:

G0 -2 is an up-and-down shift vega of the IVS;

[l % s a slope shift vega of the IVS.
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IVS Dynamics

How to compute the hedge ratios

Take two hedge portfolios HP; and HP;.
Compute the sensitivities of the hedge portfolios and the
knock-out option with respect to 3; and 3.

Solve

8/'LP1
0B

8Hf1
B3

BI'LPQ
0B
8HAP2
083

for the hedge ratios as, a».

acKO
b1
acKO

IVModelling
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Choice of the hedge portfolio

Idea:
choose HP; and HP, with maximum exposure to (31 and (s,
respectively:

HP; should be most sensitive to up-and-down shifts:
use a portfolio of at-the-money plain vanilla options;

HP, should be most sensitive to slope changes:
use a portfolio of vega-neutral risk reversals.

% ~ 8H'D2 ~
Then 853 ~ 0 and 831 ~ 0
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Risk reversal payoff

-/

[—

J

60 80 100 120 140
asset price

0

payoff

Figure 41: The payoff of the risk reversal. It is compounded from
long call with strike K1 = 120 and short put with strike K, = 80.
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Outlook

Agenda:
- local-linear smoothing v/
- data driven choice of L (number of m), and bandwidth h v/
- forecasting exercise (almost done)

- investigate obvious relations to Kalman Filtering, Fengler et
al. (2005):

L
Yij = mo(X,-J)+Zﬁi,/m/(Xi,j)+€i (15)
I=1

Bi = Bi(0)+ni (16)
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Outlook

Agenda:
- hedging empirical studies

- estimation of state price density (SPD)

0°Ci(K, T)
r(T— t\ "\,
froo(K) =e'l t)78K2

where fr_¢(K) is SPD of the time T taken in the time t

(17)
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Barrier options

Knock-out options are financial options that become worthless as
soon as the underlying reaches a prespecified barrier.

asset price
100

Figure 42: Example of two possible paths of asset’s price. When the
price hits the barrier (red) the option is no longer valid regardless
further evolution of the price.

IVModelling w



Motivation 7-2

Barrier options

(1 In BS world prices of barrier options are given analytically, all
greeks can be calculated directly.

(] The price doesn't need to be a increasing function of the
volatility parameter o.

(1 Marking to BS model is precluded due to the ¢ choice

(1 BS is not a good choice for handling barrier options!!!

IVModelling w



down-and-out up-and-out

102
195

10.1

194

ce
10
price
103

98
191

97
10

Figure 43: Price of the call knock-out barrier options as a function
of BS-0. Asset value Sqg = 90, strike price K = 80 time to maturity
7 = 0.1 interest rate r = 0.03. Left panel: barrier B = 80. Right
panel: barrier B = 120.



Motivation 7-4

Pricing Barrier Options

For pricing barrier options a local volatility (LV) model is
employed. The asset price dynamics are governed by the stochastic
differential equation:

dSe

t

where W, is a Brownian motion, y the drift and o(S¢, t) the local
volatility function which depends on the asset price and time only.
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Pricing Barrier Options
Price depends on the entire implied volatility surface (IVS). From

the IVS one can calculate G¢(K, T).
Dupire formula:

BCt(K T)+ KBCt( T)

2 _
o (K7 t) - K282Ct(K T)

OK?

gives the LV surface o(S¢, t). For practical implementation see
Andersen and Brotherthon-Ratcliffe (1997).
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Dynamics of the IVS

The IVS reveals highly dynamic behavior, which influences the
prices of the barrier options.

Example

Consider two one year knock-out put options with strike 110 and
barrier 80, when the current spot level is 100. Take the IVS from
20000103 and 20010102. The prices of these options are
respectively 1.91 and 2.37. This is a 25% difference.
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smile on different days
O 20000103
* 20010102

0.451 il

0.4r

implied volatility
o
w
5]

o
w

0.251

L

L
0.7 0.8 0.9 1 11 12 13 1.4 15
moneyness

Figure 44: Observed smile on 20000103 and 20010102 for the ma-
turity 0.25.
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Vega Hedging

(] In LV model the usual vega cannot be used because the whole
IVS is an input

(] The standard approach is to build vega hedging on the
sensitivity of the "up-and-down" shifts.

(] The skew changes, which may cause significant pricing
differences, become unhedged.
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DSFM

A complex dynamics of the IVS is explained in terms of a dynamic
semiparametric factor model (DSFM) for the (log)-1VS
Yij (i =day,j = intraday):

L
Yij = mo(Xi )+ Z Biimi(Xij) + i (19)
=1

Here m;(X; ) are smooth factor functions and (3;  is a multivariate
(loading) time-series.
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Aims

(] to apply DSFM for identification of key factors of the IVS
dynamics

(] to improve the vega hedge by hedging against most common
changes of the IVS
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8-1

DSFM

Consider DSFM for the log-IVS:

Yij = mo(Xi;) +Z@/m/ i)+ Eigs (20)

Y;j is log IV,i denotes the trading day (i =1,...,/),
j=1,...,J;is an index of the traded options on day i.

my(-) for I =0,..., L are basis functions in covariables X ;
(moneyness, time to maturity),

and (3; are time dependent factors.
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DSFM estimation

. . ~ - . = def e
Define estimates of m; and 3;; with 3,9 = 1, as minimizers of:

1 J; L 2
ZZ/{Y’.J_Zﬁi’Iﬁ”(U)} Kh(u—X,-,J-) du, (21)
i=1 j=1 1=0

where K}, denotes a two dimensional product kernel,

Kn(u) = kn,(u1) x kn,(u2), h = (h1, h2) with a one-dimensional
kernel kn(v) = h=1k(h=1v).

See Fengler et al. (2005), Fengler (2005).
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results

Model parameters

We fit our model:
[l L = 3 dynamic basis functions
[J grid covering moneyness € [0.6,1.3] and time to maturity
€ [0.05,1]
(] fix bandwidths in moneyness direction and increasing
bandwidths in maturity direction

[ on the daily IVS data from 20000103 till 20011220
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Figure 45: Invariant basis function mg and dynamic basis function
my (level)



mhat3
mhat2

06

0.4

0.6 0 maturity moneyness ) maturity
moneyness

Figure 46: Dynamic basis functions my (skew) and m3 (term struc-
ture)
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Figure 47: time series of weights 31 and ATM IVS for the fixed
maturity 0.25.
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Figure 48: Time series of weights ,27)\2 and 33



B, infuence on the IVS
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Figure 49: Typical shape of the smile for different levels of Bl-
Changes of the (31 influence mainly the surface’s level.
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Figure 50: Typical shape of the smile for different levels of Bg.
Changes of the (3, influence the smile’s skew.
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Greeks

[J In order to implement (-hedging one has to calculate
(B-greeks.

[J They are obtained by shifting the IVS in the m direction.

doption option(/VSeAB’A") — option(lVSe—AﬁrAn)

83 N (22)
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Figure 51: vega ‘greek” for down-and-out put option with barrier
5400 and strike 7425 as a function of spot
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Figure 52: Bl “greek” for down-and-out put option with barrier 5400
and strike 7425 as a function of spot
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Figure 53: 52 “greek” for down-and-out put option with barrier 5400
and strike 7425 as a function of spot
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Example
In the BS model the hedge portfolio (HP) for hedging plain vanilla
options consists of a stocks - HP = aS. The hedge ratio a (delta)
is obtained from:

dHP _ Ooption

s 77 o5

The hedge is financed by buying/selling bonds.
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How to compute the hedge ratios

Take two hedge portfolios HP; and HP;.
Compute the sensitivities of the hedge portfolios and the
up-and-out call option (CX©) with respect to 1 and /3.

Solve
OHP,  OHP oCro
o op < a ) | o vega
OHP,  OHP, = | seko
on dhr a ) skew
B2 0B 2 EYeR

for the hedge ratios a1, ap. For the down-and-out put option
(PKO) the procedure is analogous.
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Choice of the hedge portfolio

Idea:
choose HP; and HP, with maximum exposure to (31 and (3o,
respectively:

HP; should be most sensitive to up-and-down shifts:
use a portfolio of at-the-money plain vanilla options;

HP, should be most sensitive to slope changes:
use a portfolio of vega-neutral risk reversals.

% ~ 8H'D2 ~
Then 852 ~ 0 and 831 ~ 0
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Risk reversal payoff

-/

[—

J

60 80 100 120 140
asset price

0

payoff

Figure 54: The payoff of the risk reversal. It is composed from a
long call with strike Ky = 120 and a short put with strike K, = 80.
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As in standard vega hedging we apply final delta hedge. In our
case we apply delta hedge to CKO + a; HPy 4 ayHP; by calculating
the number of underlying as:

6(CKO + a1 HP; + 32HP2)
0S
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down-and-out put, long risk reversals, long ATM call
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results 11-1
Empirical Study

For each of 885 days (20000103-20030707) we start one long
position in one year CX9 and PKO.

Option | barrier  strike maturity knock-outs in-the-money
cKo 140 % 80 % 1 year 10 % 39 %
pKo 80 % 110 % 1 year 81 % 5%

Table 15: barrier and strike are given as a percentage of the spot at
the starting day

We keep the position until maturity or knock-out.
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Empirical Study

We compare the 3152 (skew) hedging approach with:

[ B hedging - no risk reversal (a, = 0) and a; = LEKO/‘?H—A'D1
B 0B
[ vega hedging - no risk reversal (a; = 0) and a; = _acKO/ale
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Aims of Hedging

(] We define the profit and loss of the strategy at the maturity
as a portfolio’s value divided by notional at the starting day.

C?O + HPT + moneyTt
So

(] The aim of the hedging is possibly large reduction of the
profit and loss variation around zero.

IVModelling w




results

Results

Profit and loss of the strategy at the maturity.

CcKko ‘ min max mean  median std med. abs.

vega | -0.1038 0.5813 -0.0165 -0.0175 0.0209  0.0413
B | -0.0752 0.5768 -0.0118 -0.0136 0.0183  0.0387
B162 | -0.0830 0.5684 -0.0066 -0.0119 0.0137  0.0345

Table 16: all values as percentage of the underlying
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cro ‘ days ‘ min max mean median std med. abs.

vega 0 -0.1038 0.5813 -0.0165 -0.0175 0.0209 0.0413
1 -0.1038 0.1710 -0.0186 -0.0171 0.0183 0.0276
10 | -0.0833 0.0710 -0.0184 -0.0164 0.0172 0.0241
25 | -0.0797 0.0590 -0.0191 -0.0151 0.0150 0.0207

B 0 -0.0752 0.5768 -0.0118 -0.0136 0.0183 0.0387
1 -0.0751 0.1459 -0.0139 -0.0130 0.0157 0.0240
10 | -0.0766 0.0702 -0.0143 -0.0130 0.0154 0.0210
25 | -0.0731 0.0508 -0.0150 -0.0116 0.0130 0.0175

B12 0 -0.0830 0.5684 -0.0066 -0.0119 0.0137 0.0345
1 -0.0829 0.1220 -0.0088 -0.0120 0.0112 0.0184
10 | -0.0375 0.0831 -0.0095 -0.0119 0.0106 0.0149
25 | -0.0360 0.0499 -0.0104 -0.0123 0.0082 0.0114

Table 17: Descriptive statistics for the hedging strategies 0, 1, 10
and 25 days before the knock-out or expiration - delta hedging effect

(gap risk).



results

Results

Profit and loss of the strategy at the maturity.

PKO‘ min max mean  median std med. abs.
vega | -0.0264 0.2799 0.0058 -0.0004 0.0105 0.0213

G | -0.0210 0.2808 0.0080 0.0016 0.0107  0.0214
G162 | -0.0332 0.2676 0.0065 0.0008 0.0092  0.0196

Table 18: Descriptive statistics for the hedging strategies of the
down-and-out put
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pro ‘ days ‘ min max mean median std med. abs.

vega 0 -0.0264 0.2799 0.0058 -0.0004 0.0105 0.0213
1 -0.0209 0.0344 -0.0040 -0.0048 0.0042 0.0064
10 | -0.0161 0.0231 -0.0024 -0.0027 0.0037 0.0056
25 | -0.0142 0.0189 -0.0018 -0.0014 0.0033 0.0046

B 0 -0.0210 0.2808  0.0080 0.0016  0.0107 0.0214
1 -0.0157 0.0350 -0.0017 -0.0030 0.0038 0.0060
10 | -0.0106 0.0276 -0.0002 -0.0009 0.0031 0.0053
25 | -0.0109 0.0202 -0.0001 -0.0002 0.0027 0.0041

B1B2 0 -0.0332 0.2676  0.0065 0.0008 0.0092 0.0196
1 -0.0249 0.0270 -0.0032 -0.0032 0.0030 0.0044
10 | -0.0110 0.0200 -0.0017 -0.0016 0.0027 0.0038
25 | -0.0092 0.0200 -0.0011 -0.0007 0.0023 0.0034

Table 19: Descriptive statistics for the hedging strategies 0, 1, 10
and 25 days before the knock-out or expiration - delta hedging effect

(gap risk).
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std. of the hedge portfolios in time (up and out call)

0.045
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days to expiry

Figure 55: The standard deviation of the portfolios as a function of
the days left to the maturity (call).
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std. of the hedge portfolios in time (down and out put)
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Figure 56: The standard deviation of the portfolios as a function of
the days left to the maturity (put).
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Conclusion

- the B hedge improves the hedging
- gap risk is still unhedged.
- better strategy might be to mix static and dynamic hedges
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