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A function, f (�) is homogeneous of degree �, if

f(�x1; ::; �xd) = ��f(x1; ::; xd):

Examples:

i) Linear models: f (x) = xT� (� = 1)

ii) Cobb-Douglas : f (x) = x�11 x�22 ; (� = �1 + �2)

iii) CRS-technology:f (x) = a(x�1 + x�2)
1=�; (� = 1)
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Why is the concept of homogeneity important

?

� Characterization of production functions

� < 1

� = 1

� > 1

()
decreasing

constant

increasing

returns to scale

� In the theory of producers,

cost-minimizing(pro�t-maximizing)

behavior of competitive �rms implies their

cost(pro�t) functions are linearly

homogeneous in input (and output) prices.

C = c (y; pI) s.t. c (y; �pI ; ) = �c (y; pI)

� = � (pI ; pO) s.t. � (�pI ; �pO) = �� (pI ; pO)
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Nonparametric Models with Homogeneous

Restriction

� The estimation has been carried out only

in parametric forms. Christensen and

Greene (1976) analyzed the cost function

of electricity generation in the US with

inputs of capital, labor, and fuel.

� Partial Linear Model. Tripathi (2000)

`e�ciency bound for �' with homogeneous

f (�) :

Yi = ZT
i � + f (Xi) + "i

� Nonparametric Model. Tripathi and Kim

(1999) with homogeneous f (�) :

Yi = f (Xi) + "i
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Objective

Analyze nonparametric additive models where

at least one component is restricted to be

homogeneous.

Yi = f1 (Xi) + f2 (Zi) + "i; ("i : i.i.d.),

where f1 (�) is homogeneous.

Example:

Yi : total costs

f1 (Xi) : variable costs (capital, labor,..)

f2 (Zi) : �xed costs
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Extension

an option pricing model

Consider a nonparametric option pricing model,

�t = f1 (St;K; T � t;Xt) ;

�t = option price

St = price of underlying asset

K = exercise price

T � t = time to expiration

Xt = other var. (St�1 or volatility).

Garcia and Renault (1996) showed f1 (�) is
homogeneous of degree one in (St;K).

Under multiplicative assumption, the pricing

model is

�t = f1(St;K)f2 (T � t;Xt) ;

where f1 (�) is linearly homogeneous.
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Imposing Homogeneity

Numeraire Approach

From the homogeneity,

f1 (X1i; ::; Xdi) = X�1
di f1

�
X1i=Xdi; ::; X(d�1)i=Xdi; 1

�
:

By de�ning

�1 (Ui) = f1
�
X1i=Xdi; ::; X(d�1)i=Xdi; 1

�
with

U =
�
X1i=Xdi; ::; X(d�1)i=Xdi; 1

�
; reparametrize

into

Yi = X�1
di �1 (Ui) + f2 (Zi) + "i: (1)

Since � is known, we only estimate �1 (�) and
construct bf1 (x) = x�1d

b�1 (u).
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General Model

Assume f2 (�) is also homogeneous, then,

Yi = X�1
di �1 (Ui) + Z�2

si �2 (Vi) + "i: (2)

With Zsi = 1 and Vi = Zi; (2) includes (1) as a

special case.

Additional Contribution: We extend the theory

for Varying-Coe�cients Models by Hastie and

Tibshirani (1997) or Functional Coe�cients

AR models by Tsay (1993).

Yi =
dX

k=1

Xki�k
�
X(d+1)i

�
+ "i;

Yi =

dX
k=1

Yi�k�k (Yi�d0) + "i
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Two-Step Estimation Procedure

Yi = X�1
di �1 (Ui) + Z�2

si �2 (Vi) + "i

Local Linear Fit :First Step

After locally approximating �1 (�) and � (�) by
linear equations,

min
b1k's; b2k's

1

n

nX
i=1

Kh (Wi � w)� [ yi � fb10+

d�1X
k=1

b1k(
Uki � uk

h1
)gX�1

di � fb20 +
s�1X
k=1

b2k(
Vki � vk

h2
)gZ�2

si ]
2;

where w = (u; v) and Wi = (Ui; Vi).
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� Note that bb10, the estimate of �1 (u) ; also

depends on the value of v. Thus, we

denote the level estimates by2
4 b�1 (u; v)b�2 (u; v)

3
5 =

2
4 bb10bb20

3
5.

� These estimates are consistent, but their

convergence rates (n
2

4+(d+s�2) ) are not

optimal, slower than n
2

4+(d�1)or n
2

4+(s�1) .

This is a natural result due to the use of

the kernel weights, Kh (Wi � w) ; of

dimension, (d+ s� 2) in our smoothing

method.
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Marginal Integration: Second Step

� For the optimal convergence rate,

marginally integrate the pilot estimates ofb�10(u; Vi _) over Vi i = 1; ::; n, i.e.,

b��10(u) = 1

n

nX
i=1

b�10(u; Vi);
similarly,

b��20(v) = 1

n

nX
i=1

b�20(Ui; v):
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Marginal Integration

Newey (1994), Tj�stheim and Auestadt

(1994), and Linton and Nielsen (1995)

� Advantage: theoretical tractability in

deriving asymptotic properties, in contrast

to back�tting

� Weakness: high costs of computations

� alternative: Instrumental Variable approach

by Kim (1998)

Finally, for the regression surface, we usebf�(x; z) = x�1d
b��1 (u) + z�2s

b��2 (v)
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Conditions

A1. fYi; Xi; Zigni=1 is a random sample, and "i is

i.i.d. with E ("jX;Z) = 0 and

E
�
"2jX;Z� = �2 (X;Z) <1:

A2. (Continuity and Di�erentiability) The

functions of the components,

varying-coe�cients, and conditional

variance, together with the

densities(marginal or joint)-f1(�), f2(�),
�1(�), �2(�) �(�), pX(�), pZ(�) and pX;Z(�) are
continuous (and hence bounded on the

compact support) and twice di�erentiable

with bounded partial derivatives :

A3. (Density Functions) pX(�), pZ(�) and
pX;Z(�) are bounded away from zero on the

compact supports. Also, conditional

density exists and is bounded.
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A4. The matrix E
�
WTW jXd = xd; Zs = zs

�
is of

full rank, and E
�
WTW jXd = xd; Zs = zs

��1
is bounded element-wise in a

neighborhood of (xd; zs).

A5. (Kernel Functions) The kernel function

K is positive, compactly supported

bounded function, with
R
K (u) du = 1 andR

uK (u) du = 0: jK (x1)�K (x2) j < cjx1 � x2j
for all x1 and x2 in its support.

A6. (Bandwidth Condition 1) h1 =

h2 = h! 0 and nhd+s�2 !1:

A7. (Bandwidth Condition 2)

nh
(d�1)
1 h

2(s�1)
2 = ln2 n!1,

h
(s�1)
2 =h21 !1; h1 ! 0, and nh1 !1:
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Main Results I

Notation:

w = (w1; w2) = (u; v), b�0(w) = �b�10(w); b�20(w)�
Theorem 1. Assume that the conditions of

A.1 through A.6 hold. Then,

p
nhd+s�2

hb�0(w)� �0(w)�BIAS
i

L�! N

�
0;
jjKjj22
pW (w)

��

�

where

�2K =
R
K (u)u2du; and jjKjj22 =

R
K2 (r) dr:
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BIAS = h2

2
�2K �2

64 tr
�
D2�1(w1)

�
+

E(X�1
d

Z�2
s

jW=w)
E(X2�1

d
jW=w)

tr
�
D2�2(w2)

�
tr
�
D2�2(w2)

�
+

E(X�1
d

Z�2
s

jW=w)
E(Z2�2

s jW=w)
tr
�
D2�1(w1)

�
3
75 ;

�� (W ) �

2
64

EjW (X
2�1
d

�2
"
(W;Xd;Zs))

E2
jW

(X
2�1
d

)

EjW (X
�1
d

Z�2
s

�2
"
(W;Xd;Zs))

EjW (X
2�1
d

)EjW (Z
2�2
s )

EjW (X
�1
d

Z�2
s

�2
"
(W;Xd;Zs))

EjW (X
2�1
d

)EjW (Z
2�2
s )

EjW (Z2�2
s

�2
"
(W;Xd;Zs))

E2
jW

(Z
2�2
s )

3
75
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Remark 2

� the convergence rate,
p
nhd+s�2; from using

the kernel function which is de�ned on

R
d�1 � R

s�1.

� the bias of b�10(u; v) is similar to the local

linear �t in Fan (1992), a function of

\second derivatives only", except that it

depends on D2�2(v), which is a natural

extension of Tripathi and Kim (1999)

dealing with Yi = X�1
di �1 (Ui) + "i.

� For homoscedastic errors, the variance is

jjKjj22�2"=pW (w) ; the standard result.
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From bf(x; z) = x�1d
b�1 (u) + z�2s

b�2 (v)
Corollary 3. Under the same conditions of

Theorem 1,
p
nhd+s�2

h bf(x; z)� f(x; z)�BIASf

i
L�! N

�
0;

jjKjj22
pW (w)�f

�
;

BIASf = h2

2 [x�1d ; z�2s ]
T
BIAS,

�f =
x
2�1
d

E(X2�1
d

�2
"
(W;Xd;Zs)jW=w)

E2(X2�1
d

jW=w)
+

2
x
�1
d
z�2
s

E(X�1
d

Z�2
s

�2
"
(W;Xd;Zs)jW=w)

E(X2�1
d

jW=w)E(Z2�2
s jW=w)

+

z2�2
s

E(Z2�2
s

�2
"
(W;Xd;Zs)jW=w)

E2(Z2�2
s jW=w)

:



19

'

&

$

%

Main Results II

Notation: b��1(u) = 1
n

Pn
j=1

b�10(u; Vj)
Theorem 4 Under the conditions of A.1

through A.5 and A.7,

i)

q
nhd�11

hb��1(u)� �1(u)�BIAS� (u)
i

L�! N
�
0; jjKjj22��1

�
;

��1 =
R p2

V
(s2)

pW (u;s2)

E(X2�1
d

�2
"
(W;Xd)jW=(u;s2))

E2(X2�1
d

jW=(u;s2))
ds2;

BIAS� (u) = �2K [
h21
2 tr

�
D2�1(u)

�
+

h22
2

R
pV (v)

E(X�1
d

Z�2
s

jW=u;v)
E(X2�1

d
jW=u;v)

tr
�
D2�2(v)

�
dv];
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ii)

q
nhd�11

h bf�1 (x)� f1(x)�BIAS�
f1
(x)
i

L�! N
�
0; jjKjj22�f1

�
;

BIAS�
f1
(x) = x�1d BIAS� (u)

�f1 = x2�1d

R p2
V
(s2)

pW (u;s2)

E(X2�1
d

�2
"
(W;Xd)jW=(u;s2))

E2(X2�1
d

jW=(u;s2))
ds2:
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Remark 5

� Undersmoothing in a nuisance direction,

h22=h
2
1 ! 0; BIAS� (u) =

h21
2 �

2
Ktr

�
D2�1(u)

�
:

� For homoscedastic errors, the variance is

jjKjj22�2"
R p2

V
(s2)

pW (u;s2)
ds2.

� the same results from usual marginal

integration in additive models with LLF as

pilot estimate.
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Application: livestock production function

in Wisconsin

Data Set: Farm Credit Service of Saint Paul,

Minnesota (1987)

the number of observations,N = 250

y: livestock

x: family labor

z1: miscellaneous inputs (repairs, rent, supplies,

gas, oil utilities)

z2: intermediate assets

z3: hired labor

z4:animal inputs (purchased feed, breeding,

veterinary services)
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OLS based on Cobb-Douglas

f (l) = c
5Y
i=1

l�ii

dlog y = 1:886
(0:289)

+ 0:063
(0:020)

log x+ 0:289
(0:025)

log z1

+0:305
(0:034)

log z2 + 0:031
(0:007)

log z3 + 0:277
(0:023)

log z4;

R2 = 0:900
5X
i=1

b�i = 0:965:

At 1% level, we cannot reject the hypothesis

that
P5

i=1 �i = 1, that is, cannot reject the

hypothesis of CRS under a Cobb-Douglas

speci�cation.

Problems: the functional misspeci�cation,

homogeneity only on `variable input', not on

`�xed input'
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� Nonparametric Modeling Assumption:

�xed variable: family labor(x)

variable input: other inputs(z1; ::; z4)

y = f1 (x) + f2 (z) + " : additivity

= f1 (x) + z4f2 (z1=z4; z2=z4; z3=z4; 1) + "

: linear homogenity

= f1 (x) + z4g2 (w1; w2; w3) + "; wi = zi=z4.

* Severance-Lossin and Sperich (1997):

componentwise additivity

no interaction between bariable inputs

y =
5X
i=1

hi (li)
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� Results : elasticity of scale measures the

percent increase in output due to one

percent increase in all inputs.

e (x; z) =
5X

i=1

@ log f (li)

@ log li

1. Unrestricted Model

e (x; z) =
x0rfx (x; z) + z0rfz (x; z)

f (x; z)

2. Restricted Model: with f2 (z) homogeneous

of degree r

e (x; z) =
x0rfx (x; z) + r0f2 (z)

f (x; z)
;

by Euler's theorem

3. Parametric Cobb-Douglas

e (x; z) =

5X
i=1

�i
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� Scale Elasticities for Livestock Production

in Wisconsin Farms

(Full Sample) (Excl. Outliers)

Mean Med. Mean Med

RM 1.067 1.018 1.060 1.016

UM 0.994 1.011 1.011 1.012

CD 0.965 (�xed)

1. be (xi; zi) uctuates around 1

2. closeness of average or median scale

elasticity between two models

=)indirect evidence for the validity of

restriction

3. be (xi; zi)'s from the restricted model are

more centered around 1 than those from the

unrestricted, while they are �xed asP5
i=1

b�i = 0:965 under Cobb-Douglas.
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Conclusion

� Nonparametric Estimation of Additive

Models with Homogeneous Components

nonparametric : exibilty

additivity : reduction in Dimension

homogeneity : economic restriction

� Asymptotic Theory of Two-Step

Estimators:

local linear �t : 1st step

marginal integration : 2nd step

properties :asymptotic normality,

optimal convergence rate
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