Credit Risk Calibration based on CDS Spreads

Shih-Kang Chao
Wolfgang Karl Härdle
Hien Pham-Thu

Ladislaus von Bortkiewicz Chair of Statistics

C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de

The impact of the subprime crisis

Lehman collapse sends
Financial
CIITGI dollar weakens walyst-Downturini Slumpian we CIRRVING DANEERS COECOROMic disast CAPRYING DANGERS THAT, WHILENOW LATENT, ARE POTENTIALIY IETHAL. Slock tuinberatasict anxiety daepenbse asse
nirvinalindorbet
Interi ist RECESSION FC

THE WALL SMRELI JOUKNAL.

risis on Wall Street as Lehman Totters Financial Crisic derillis Sold, AGG Seeks to Raise Cash be eon markets breakdown 1.2

 SOUVERFIGN DERT CRISIS: Pus debt growing tears sees brink of a default turmoil in bond markets if FPticiasmets reopen monday Frustration has grown debt downgradess banks on the edge of insolvencs Stock market crash! tr. ol banking inaustr.

The consequences out of the financial crisis

Innocent \& not involved?

Credit Risk Calibration based on CDS Spreads

The Concept of Central Counterparty (CCP)

Central Counterparty interposes itself between counterparties and becomes the buyer to every seller and the seller to every buyer.

Risk Mangement of CCP

Main focus: credit risk

Credit Risk Calibration by CCP

Is CCP in the position to monitoring the spillover of credit risk by its members?

Credit Risk Calibration based on CDS Spreads

Credit Risk Calibration: How to measure credit risk spillover effects?

High upward and downward co-movements in CDS spreads during the period 2007-2009.

Risk measures

\square Value at Risk (VaR)

$$
\operatorname{VaR}_{t+d}^{\alpha}=\inf \left\{x \in \mathbb{R}: \mathrm{P}\left(X_{t+d} \leq x \mid \mathcal{F}_{t}\right) \geq \alpha\right\}
$$

where $X_{t}=-\log \left(\frac{S_{t}}{S_{t-1}}\right)$ denotes the CDS spread \log returns.

Objectives

\square Marginal credit risk analysis tool based on CDS spreads
\square Measure of interconnectedness: quantification of mutual effects of credit risk
\checkmark Relationship between CDS spreads in tail events: linear or non-linear?
\square Uncover the relationship between CDS spreads and CDS determinants

Outline

1. Motivation \checkmark
2. Linear quantile regression
3. PLM Methodology
4. Empirical study
5. Conclusions

Linear Quantile Regression

$$
\begin{aligned}
& X_{i, t}=\alpha_{i}+\gamma_{i}^{\top} M_{t-1}+\varepsilon_{i, t} \\
& X_{j, t}=\alpha_{j \mid i}+\beta_{j \mid i} X_{i, t}+\gamma_{j \mid i}^{\top} M_{t-1}+\varepsilon_{j, t}
\end{aligned}
$$

M_{t} : state variables. $F_{\varepsilon_{i, t}}^{-1}\left(\tau \mid M_{t-1}\right)=0$ and $F_{\varepsilon_{j, t}}^{-1}\left(\tau \mid M_{t-1}, X_{i, t}\right)=0$.

$$
\begin{aligned}
\widehat{V a R}_{i, t} & =\hat{\alpha}_{i}+\hat{\gamma}_{i}^{\top} M_{t-1} \\
\widehat{\operatorname{CoVaR}}_{j \mid i, t} & =\hat{\alpha}_{j \mid i}+\hat{\beta}_{j \mid i} \widehat{V a R}_{i, t}+\hat{\gamma}_{j \mid i}^{\top} M_{t-1}
\end{aligned}
$$

Systemic contribution of i on j :

$$
\triangle \widehat{\operatorname{CoVaR}}_{j \mid i, t}=\widehat{\operatorname{CoVaR}}_{j \mid i, t}-\widehat{\operatorname{CoVaR}}_{j \mid X_{i}=\text { Median }, t}
$$

See Adrian \& Brunnermeier (2011): CoVaR (AB (2011))
Credit Risk Calibration based on CDS Spreads

Figure 1: Quantile regression at 0.01 level on CDS spread return. Linear quantile regression line. Partial linear quantile regression estimation. The dashed lines express the asymptotic and bootstrap confidence bands at 95\% level.
Credit Risk Calibration based on CDS Spreads

Partial Linear Quantile Regression:

$$
\begin{aligned}
& X_{i, t}=\alpha_{i}+\gamma_{i}^{\top} M_{t-1}+\varepsilon_{i, t} \\
& X_{j, t}=\tilde{\alpha}_{j \mid i}+\tilde{\beta}_{j \mid i}^{\top} M_{t-1}+I_{j \mid i}\left(X_{i, t}\right)+\varepsilon_{j, t}
\end{aligned}
$$

I : a general function. M_{t} : state variables. $F_{\varepsilon i, t}^{-1}\left(\tau \mid M_{t-1}\right)=0$ and $F_{\varepsilon_{j, t}}^{-1}\left(\tau \mid M_{t-1}, X_{i, t}\right)=0$.

$$
\begin{aligned}
\widehat{\operatorname{VaR}}_{i, t} & =\hat{\alpha}_{i}+\hat{\gamma}_{i}^{\top} M_{t-1}, \\
\widehat{\operatorname{CoVaR}}_{j \mid i, t} & =\hat{\alpha}_{j \mid i}+\hat{\gamma}_{j \mid i}^{\top} M_{t-1}+\hat{l}_{j \mid i}\left(\widehat{\operatorname{VaR}}_{i, t}\right) .
\end{aligned}
$$

See Chao, Härdle \& Wang (2013): Quantile Regression in Risk Calibration
Credit Risk Calibration based on CDS Spreads

State variables

$M_{t}: 7$ state variables suggested by AB and further extension:

1. VIX
2. Short term liquidity spread
3. Change in the 3 M T-bill rate
4. Change in the slope of the yield curve
5. Change in the credit spread between 10 years BAA-rated bonds and the T-bond rate
6. S\&P500 returns
7. Dow Jones U.S. Real Estate index returns
8. Constituent's specific stock log returns (15x)
9. Constituent's specific stock volatility log returns (15x)

Least Absolute Shrinkage and Selection Operator (LASSO)

\square Selection of variables with significant effect on CDS spread returns
\square The quantile regression under LASSO penalty

$$
L^{\text {LASSO } \left.^{(} \beta\right)=\sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\beta^{\top} x_{i}\right)+\lambda_{n} \sum_{j=1}^{p}\left|\beta_{j}\right||.|c| l}
$$

where $0 \leq \tau \leq 1$ and λ_{n} denotes the penalty parameter.
$\square \lambda_{n}$ is chosen via generalized approximate cross-validation (GACV) suggested by Yuan (2006) and Li et al. (2007)

Credit Risk Calibration based on CDS Spreads

CDS spread returns

\square Daily CDS spreads of 14 biggest derivative dealers and 1 monoline
\square Overall data period: Sept 2002 - Dec $2011(N=2208)$
\square Segregation into two sub-periods

- pre-shock: Sept 122002 - Sept 122008
- shock event: Lehman Brothers filed for Chapter 11 bankruptcy protection on Sept 152008
- post-shock: Sept 162008 - Dec 312011

Table 1: Descriptive statistics of CDS spread log returns

	Std. Dev	Skewness	Kurtosis	Min	Max	Autocorr.
CITI	0.023	0.871	27.203	-0.174	0.286	0.032
BOA	0.023	0.579	14.454	-0.182	0.247	0.008
BARC	0.021	1.045	24.028	-0.155	0.270	0.115
BNP	0.021	0.160	17.017	-0.192	0.214	0.117
CS	0.019	0.172	17.983	-0.168	0.182	0.065
DB	0.020	0.682	22.554	-0.156	0.252	0.143
GS	0.020	-0.040	28.865	-0.248	0.219	0.222
HSBC	0.019	-0.294	13.582	-0.147	0.151	0.067
JPM	0.019	0.453	15.169	-0.138	0.213	0.117
MS	0.023	4.678	118.434	-0.255	0.475	-0.006
RBS	0.024	1.884	87.755	-0.368	0.376	-0.072
SG	0.020	-0.209	21.404	-0.223	0.187	0.129
UBS	0.020	0.439	20.372	-0.153	0.218	0.090
LEH	0.019	-2.040	30.336	-0.226	0.148	0.138
AIG	0.024	1.106	61.673	-0.253	0.402	0.237

Estimated Coefficient: $\widehat{\beta_{V I X}}$ - pre-shock

Figure 2: $\widehat{\beta}$ of variable VIX of all 15 FI : 1-Citi, 2-BoA, 3-GS, 4-JPM, 5-MS, 6 -LEH, 7 -AIG, 8 -SG, $9-B N P, 10-\mathrm{CS}, 11-\mathrm{DB}, 12-\mathrm{BARC}, 13-\mathrm{HSBC}, 14-\mathrm{RBS}$, 15-UBS
Credit Risk Calibration based on CDS Spreads

Estimated Coefficient: $\widehat{\beta_{V I X}}$ - post-shock

Figure 3: $\widehat{\beta}$ of variable VIX of all 15 FI : 1-Citi, 2-BoA, 3-GS, 4-JPM, 5-MS, 6 -AIG, $7-S G, 8-B N P, 9-C S, 10-D B, 11-B A R C, 12-H S B C, 13-R B S, 14-U B S$

Figure 4: Backtesting results: Bank of America VaR exceedance under LASSO quantile regression (left) and under AB model (right) in pre-shock period.

Figure 5: Backtesting results: Royal Bank of Scotland VaR exceedance under LASSO quantile regression (left) and under AB model (right) in pre-shock period.

Backtesting of calculated VaR under AB (2011)

	Exceedance	LRpoF	LR $_{\text {uncond }}$	LRcc	Test Outcome
CITI	38	38.69	0	38.69	Rejected
BOA	39	41.17	0	41.17	Rejected
BARC	28	17.22	0	17.22	Rejected
BNP	33	27.17	0	27.17	Rejected
CS	46	59.90	0	59.90	Rejected
DB	47	62.76	0	62.76	Rejected
GS	45	57.08	0	57.08	Rejected
HSBC	41	46.27	0	46.27	Rejected
JPM	57	93.73	0	93.73	Rejected
MS	60	103.77	0	103.77	Rejected
RBS	40	43.70	0	43.70	Rejected
SG	31	22.99	0	22.99	Rejected
UBS	36	33.91	0	33.91	Rejected
LEH	43	51.58	0	51.58	Rejected
AIG	57	93.73	0	93.73	Rejected

Table 2: Backtesting for $\mathrm{N}=1145$ observations; Test statistic: $\mathrm{LR}_{\text {Pof }}$ for Kupiec test, $\mathrm{LR}_{\text {uncond }}$ for Christoffersen test, $\mathrm{LR}_{\mathrm{CC}}$ for conditional coverage. Credit Risk Calibration based on CDS Spreads

Backtesting of calculated VaR under QLPLM

	Exceedance	LR $\mathbf{P o F}$	LR $_{\text {uncond }}$	LR $_{\mathbf{c c}}$	Test Outcome
CITI	18	3.22	0	3.22	Not Rejected
BOA	20	5.27	0	5.27	Not Rejected
BARC	15	1.01	0	1.01	Not Rejected
BNP	19	4.19	0	4.19	Not Rejected
CS	15	1.01	0	1.01	Not Rejected
DB	22	7.73	0	7.73	Not Rejected
GS	26	13.73	0	13.73	Rejected
HSBC	18	3.22	0	3.22	Not Rejected
JPM	19	4.19	0	4.19	Not Rejected
MS	20	5.27	0	5.27	Not Rejected
RBS	18	3.22	0	3.22	Not Rejected
SG	21	6.45	0	6.45	Not Rejected
UBS	16	1.62	0	1.62	Not Rejected
LEH	33	27.17	0	27.17	Rejected
AIG	25	12.11	0	12.11	Rejected

Table 3: Backtesting for $N=1145$ observations; Test statistic: LR ${ }_{\text {PoF }}$ for Kupiec test, $L R_{\text {uncond }}$ for Christoffersen test, $L R_{\text {CC }}$ for conditional coverage. Credit Risk Calibration based on CDS Spreads

$\triangle \mathrm{CoVaR}$ in pre-shock period

	Citi	BoA	BAR	DB	GS	JPM	MS	RBS	LEH	AIG	sum
Citi	-	-0.04	-0.03	-0.02	-0.03	-0.03	-0.03	-0.03	-0.04	-0.04	-0.41
BoA	-0.07	-	-0.04	-0.03	-0.05	-0.05	-0.04	-0.04	-0.04	-0.04	-0.58
BAR	-0.01	-0.04	-	-0.05	-0.03	-0.04	-0.03	-0.07	-0.03	-0.03	-0.61
DB	0.00	-0.01	-0.05	-	-0.03	-0.03	-0.03	-0.04	-0.01	-0.02	-0.37
GS	-0.05	-0.04	-0.02	-0.02	-	-0.04	-0.04	-0.03	-0.03	-0.04	-0.46
JPM	-0.05	-0.05	-0.03	-0.03	-0.04	-	-0.03	-0.03	-0.03	-0.04	-0.52
MS	-0.04	-0.03	-0.03	-0.03	-0.05	-0.03	-	-0.03	-0.03	-0.05	-0.43
RBS	-0.03	-0.02	-0.12	-0.07	-0.02	-0.04	-0.02	-	-0.03	-0.02	-0.78
LEH	-0.04	-0.04	-0.03	-0.03	-0.04	-0.04	-0.03	-0.03	-	-0.04	-0.46
AIG	-0.02	-0.02	-0.01	-0.02	-0.03	-0.03	-0.02	-0.02	-0.02	-	-0.28

Table 4: Average \triangle CoVaR overview for pre-shock period.

$\triangle \mathrm{CoVaR}$ in post-shock period

	Citi	BoA	BAR	DB	GS	JPM	MS	RBS	SG	AIG	sum
Citi	-	-0.16	-0.07	-0.05	-0.15	-0.15	-0.11	-0.07	-0.08	-0.11	-0.96
BoA	-0.19	-	-0.14	-0.13	-0.20	-0.19	-0.18	-0.13	-0.16	-0.11	-1.45
BAR	-0.11	-0.15	-	-0.10	-0.12	-0.12	-0.08	-0.14	-0.13	-0.10	-1.06
DB	-0.15	-0.16	-0.13	-	-0.19	-0.18	-0.17	-0.20	-0.20	-0.16	-1.54
GS	-0.21	-0.20	-0.13	-0.15	-	-0.22	-0.18	-0.14	-0.17	-0.14	-1.53
JPM	-0.17	-0.18	-0.09	-0.12	-0.17	-	-0.17	-0.14	-0.15	-0.13	-1.32
MS	-0.11	-0.13	-0.07	-0.08	-0.17	-0.14	-	-0.10	-0.11	-0.13	-1.03
RBS	-0.10	-0.17	-0.12	-0.16	-0.17	-0.12	-0.12	-	-0.14	-0.16	-1.25
SG	-0.15	-0.25	-0.13	-0.14	-0.21	-0.24	-0.18	-0.22	-	-0.17	-1.69
AIG	-0.01	-0.03	-0.05	-0.06	-0.04	-0.03	-0.04	-0.05	-0.04	-	-0.35

Table 5: Average \triangle CoVaR overview for post-shock period

Average \triangle CoVaR in the pre-shock period

Figure 6: Network of spread spillover effects described by average $\triangle \mathrm{CoVaR}$

Average $\triangle \mathrm{CoVaR}$ in the post-shock period

Figure 7: Network of spread spillover effects described by average $\triangle \mathrm{CoVaR}$

Credit Risk Calibration based on CDS Spreads

Change in \triangle CoVaR during the pre-shock period

Figure 8: Network of spread spillover effects described by $\triangle \mathrm{CoVaR}$ Credit Risk Calibration based on CDS Spreads

Study of CDS spreads determinants

\square CDS spread returns mainly described by implied volatility index VIX and real estate sector returns
\square Strong positive relationship between CDS spread returns and equity volatility index
\square Heterogeneous impact in regions: high sensitivity of US FIs to VIX after shock, delayed in sensitivity for European FIs.
\square Effects of firm specific volatility is not as strong as market volatility indicated by VIX index

Study of \triangle CoVaR

\square Continental effects shown by \triangle CoVaR: higher value observed between FIs from the same region
$\square \triangle$ CoVaR more suitable for computing stressed $\mathrm{VaR}(\mathrm{VaR}$ under data of financial crisis) rather than for CDS spread forecasting, especially in late post-shock period Next steps:
$\square \triangle \mathrm{CoVaR}$ as risk weighting basis for transactions cleared through CCP
$\square \triangle$ CoVaR of CDS index on corporate companies for estimation of portfolio potential future exposure (PFE)

Credit Risk Calibration based on CDS Spreads
 Shih-Kang Chao
 Wolfgang Karl Härdle Hien Pham-Thu

Ladislaus von Bortkiewicz Chair of Statistics
 C.A.S.E. - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Partial Linear Model (PLM)

\square The partial linearity observation implies:

$$
\begin{align*}
& X_{i, t}=\alpha_{i}+\gamma_{i}^{\top} M_{t-1}+\varepsilon_{i, t} \\
& X_{j, t}=\tilde{\beta}_{j \mid i}^{\top} M_{t-1}+I_{j \mid i}\left(X_{i, t}\right)+\varepsilon_{j, t} . \tag{1}
\end{align*}
$$

I : a general function. M_{t} : state variables. $F_{\varepsilon_{i, t}}^{-1}\left(\tau \mid M_{t-1}\right)=0$ and $F_{\varepsilon_{j, t}}^{-1}\left(\tau \mid M_{t-1}, X_{i, t}\right)=0$.
\square Advantages

- Capturing nonlinear asset dependence
- Avoid curse of dimensionality

Estimation of Partial Linear Model

\checkmark PLM model: Liang, Härdle and Carroll (1999) and Härdle, Ritov and Song (2012)

$$
Y_{t}=\beta^{\top} M_{t-1}+I\left(X_{t}\right)+\varepsilon_{t}
$$

\square Consider $[0,1]$ (standard rank space). Dividing $[0,1]$ into a_{n} equally divided subintervals $I_{n t}, a_{n} \uparrow \infty$. On each subinterval, $I(\cdot)$ is roughly constant.

Estimation of PLM QR

1. Linear element β :

$$
\begin{aligned}
& \hat{\beta}= \\
& \underset{\beta}{\operatorname{argmin}} \min _{I_{1}, \ldots, I_{a_{n}}} \sum_{t=1}^{n} \rho_{\tau}\left\{Y_{t}-\beta^{\top} M_{t-1}-\sum_{m=1}^{a_{n}} I_{m} \mathbf{1}\left(X_{t} \in I_{n t}\right)\right\}
\end{aligned}
$$

2. Nonlinear element $I(\cdot)$: With data $\left\{\left(X_{t}, Y_{t}-\hat{\beta}^{\top} M_{t-1}\right)\right\}_{t=1}^{n}$, applying LLQR.

\triangle CoVaR in pre-shock period

	Citi	BoA	BARC	DB	GS	JPM	MS	RBS	LEH	AIG
Citi	-	-0.37	-0.23	-0.27	-0.35	-0.32	-0.27	-0.34	-0.42	-0.45
BoA	-0.52	-	-0.33	-0.26	-0.29	-0.27	-0.21	-0.50	-0.33	-0.43
BARC	-0.42	-0.29	-	-0.35	-0.42	-0.35	-0.30	-0.46	-0.58	-0.52
DB	-0.23	-0.22	-0.52	-	-0.16	-0.21	-0.24	-0.52	-0.29	-0.50
GS	-0.27	-0.28	-0.29	-0.22	-	-0.22	-0.27	-0.61	-0.34	-0.28
JPM	-0.29	-0.25	-0.20	-0.23	-0.24	-	-0.46	-0.50	-0.45	-0.26
MS	-0.27	-0.25	-0.50	-0.36	-0.37	-0.23	-	-0.56	-0.27	-0.47
RBS	-0.32	-0.35	-1.67	-0.80	-0.16	-0.55	-0.22	-	-0.46	-0.46
LEH	-0.35	-0.29	-0.26	-0.32	-0.30	-0.25	-0.29	-0.27	-	-0.32
AIG	-0.34	-0.32	-0.36	-0.21	-0.28	-0.21	-0.27	-0.52	-0.36	-

Table 6: Minimum \triangle CoVaR overview for pre-shock period which demonstrates the maximum negative effects on CDS spreads returns.

$\triangle \mathrm{CoVaR}$ in post-shock period

	Citi	BoA	BARC	DB	GS	JPM	MS	RBS	SG	AIG
Citi	-	-0.79	-0.97	-0.79	-1.03	-1.55	-1.36	-1.06	-0.51	-1.24
BoA	-0.84	-	-0.55	-0.58	-0.83	-0.58	-1.19	-0.45	-0.65	-0.56
BARC	-1.72	-0.78	-	-0.58	-0.90	-0.46	-0.42	-0.95	-0.47	-0.74
DB	-1.41	-0.82	-0.97	-	-1.60	-1.52	-1.32	-0.74	-2.19	-1.35
GS	-0.90	-1.18	-0.63	-1.09	-	-0.73	-1.99	-1.51	-0.94	-1.66
JPM	-0.58	-0.54	-0.34	-0.42	-0.55	-	-1.07	-0.44	-0.61	-0.77
MS	-1.26	-0.94	-0.83	-1.05	-0.95	-0.89	-	-1.40	-1.14	-2.31
RBS	-0.69	-0.67	-0.39	-0.52	-0.81	-0.55	-0.47	-	-0.61	-0.64
SG	-0.89	-1.02	-0.38	-0.44	-0.90	-0.79	-0.71	-0.63	-	-0.54
AIG	-0.61	-0.41	-0.65	-0.71	-0.37	-0.49	-0.58	-0.78	-0.31	-

Table 7: Minimum \triangle CoVaR overview for post-shock period which demonstrates the maximum negative effects on CDS spreads returns.

References

围 Adrian, T. and Brunnermeier, M.
CoVaR,
Staff Reports 348 (2011), Federal Reserve Bank of New York
(Chao, S. K., Härdle, W. and Wang W.
Quantile Regression in Risk Calibration
SFB Working Paper (2012), Handbook of Quantitative Finance and Risk Management (2013)

Eärdle, W. and S. Song
Confidence bands in quantile regression
Econometric Theory (2010) 26: 1180-1200

References

Härdle, W., Y. Ritov and S. Song
Bootstrap Confidence Bands and Partial Linear Quantile Regression
J. of Multivariate Analysis, 19, 610-625 (2012)

- Hautsch, N., Schaumburg, J. and Schienle, M.

Financial Network Systemic Risk Contributions
SFB Discussion Paper (2013), submitted to Review of Finance
圊 Yuan, M.
GACV for quantile smoothing splines
Computational Statistics \& Data Analysis 50: 813-829 (2006)

