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Abstract
In this work, we propose to define Gaussian Processes indexed by multidimensional distributions.
In the framework where the distributions can be modeled as i.i.d realizations of a measure on
the set of distributions, we prove that the kernel defined as the quadratic distance between the
transportation maps, that transport each distribution to the barycenter of the distributions, provides
a valid covariance function. In this framework, we study the asymptotic properties of this process,
proving micro ergodicity of the parameters.
Keywords: Gaussian Process, Kernel methods, Wasserstein Distance.

1. Introduction

Gaussian process models rely on the definition of a covariance function that characterises the cor-
relations between values of the process at different observation points. As the notion of similarity
between data points is crucial, i.e. close location inputs are likely to have similar target values, co-
variance functions, or kernels, are the key ingredient in using Gaussian processes, since they define
nearness or similarity.

In this paper we propose to define Gaussian processes indexed on distributions on Rd. This
situation happens for instance in numerical code experiments when the prior knowledge of the
process may not be an exact value but rather a set of acceptable values that will be modeled using
a prior distribution. Hence we observe output values for such probability distributions and want to
forecast the process for other ones. This requires defining proper covariance functions indexed on
the set of distributions. There has been a huge amount of literature dealing with the use of Gaussian
Processes in Machine Learning over the last decade. We refer for instance to ?, ? or ? and references
therein.

The simplest method is to compare a set of parametric features built from the probability dis-
tributions, such as the mean or the higher moments. This approach is limited as the effect of such
parameters do not take into account the whole shape of the law. Specific kernel should be designed
in order to map distributions into a reproducing kernel Hilbert space in which the whole arsenal of
kernel methods can be extended to probability measures. This issue has recently been considered in
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GAUSSIAN PROCESS FORECAST WITH MULTIDIMENSIONAL DISTRIBUTIONAL ENTRIES

? or ?. We aim at basing these kernels on the Wasserstein, or transport-based, distance which was
shown to be relevant and insightful for comparing distributions. This work has been studied for one
dimensional case in ? using the special expression of Wasserstein distance in dimension 1. Yet this
case hides the difficulty of the problem by using the optimal coupling with the uniform random vari-
able. In the general dimension case, in order to build a valid kernel from the Wasserstein distance,
we restrict ourselves to the case where the distributions are drawn following a common distribution
P over the set of distributions with finite second order moment. This enables to define a notion of
Fréchet mean (or barycenter) of the distributions, which will be used to compare the distributions
between themselves. Actually, we use this barycenter to construct a covariance by considering the
transportation maps from the distributions to this barycenter and using the distance between these
maps as a way to generate kernels. The notion of Wasserstein barycenters and their use in machine
learning and in statistics is a growing research field. We mention for instance ?, ?, ? for instance.

We thus obtain a Gaussian process indexed by distributions that belong to the support of P. We
then provide asymptotic results on the estimation of parameters of covariance functions constructed
as described above, as the number of observed values of the process increases. Since the process is
observed for input distributions belonging to the (fixed) support of P, we provide infill asymptotic
results ?. More precisely, we show a very general result for the microergodicity of covariance
parameters. We mention that for the same purpose, another point of view is to consider a distribution
regression framework described in ?.

The paper falls into the following parts. In Section 2 we recall some definitions on kernels and
on the notion of Wasserstein barycenter of distributions. Section 3 is devoted to the construction
and analysis of an appropriate kernel for probability measures on Rd for d ≥ 1. Asymptotic results
and micro-ergodicity of the parameters are presented in Section 4. Section 5 is devoted to numerical
applications while the proofs are postponed to the appendix.

2. Gaussian Processes indexed by distributions

2.1. Framework of the study

Gaussian process models are now widely used in fields such as geostatistics, computer experiments
or machine learning ?, ?. A Gaussian process model consists in modeling an unknown function as a
realization of a Gaussian process, and hence corresponds to a functional Bayesian framework. For
instance, in computer experiments, the input points of the function are simulation parameters and
the output values are quantities of interest obtained from the simulations.

In this paper we focus on Gaussian processes for which the input parameters are in P(Rp) the
set of distributions over Rp. To study such models, Gaussian Processes must be defined over the set
of distributions.

Let us recall that a Gaussian process (Yx)x∈E indexed by a set E is entirely characterised by its
mean and covariance functions. Its covariance function is defined by (x, y) ∈ E2 → Cov(Xx, Xy).
A function K : E × E 7→ R is actually the covariance of a random process if and only if it is a
positive definite kernel, that is to say for every x1, · · · , xn ∈ E and λ1, · · · , λn ∈ R,

n∑
i,j=1

λiλjK(xi, xj) ≥ 0. (1)

2
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In this case we say that K is a covariance kernel. We also say that K is a negative definite kernel if
the quadratic form in (1) is non-positive when

∑n
i=1 λi = 0. Hence we need to build a function on

P(Rp)× P(Rp) which satisfies the positive constraint (1).
It is then desirable that the covariance function evaluated at (µ, ν) ∈ P(Rp)2 be related to the

Wasserstein distance between µ and ν (see ?). In the one dimensional case, this has been proved
to be possible in ?. Indeed, in this case, using a covariance based on the Wasserstein distance
amounts to using the well-known optimal coupling (see ?) for all µ ∈ P(R) with finite second
order moments

Zµ := F−1µ (U), (2)

where F−1µ is defined as
F−1µ (t) = inf{u, Fµ(u) ≥ t},

and denotes the quantile function of the distribution µ and where U is an uniform random variable.
This coupling can be seen as a non-Gaussian random field indexed by the set of distributions on the
real line with finite second order moments. As such, its variogram

(µ, ν) 7→ E(Zµ − Zν)2 (3)

defines a negative definite kernel, equal toW 2
2 (µ, ν) since the coupling (Zµ) is optimal. This kernel

can be used to construct families of covariance functions based on the one-dimensional Wasserstein
distance, see ?.

In general dimension, however, there is no indication that the function (µ, ν) → W 2
2 (µ, ν)

defines a negative definite kernel. Hence, since the set of measures on Rp is a manifold endowed
with the Monge-Kantorovich (Wasserstein) distance, we suggest to compare the distributions µ and
ν around a central measure. This point of view is similar to what has been proposed in ? for
image analysis. For this, we propose to consider that the distributions of interest are realizations
of a distribution over the set of distributions. Then, we construct a covariance kernel by using
the barycenter of this distribution (over distributions), and by using optimal transport maps. The
following section is devoted to the construction of the so-called Wasserstein barycenter.

2.2. Barycenters of distributions

Let us consider the setW2(Rp) of probability measures on Rp with finite moments of order two. For
two µ, ν inW2 (Rp) , we denote by Π(µ, ν) the set of all probability measures π over the product
set Rp × Rp with first (resp. second) marginal µ (resp. ν).

The transportation cost with quadratic cost function, or quadratic transportation cost, between
these two measures µ and ν is defined as

T2(µ, ν) = inf
π∈Π(µ,ν)

∫
‖x− y‖2 dπ(x, y). (4)

This transportation cost allows to endow the set W2 (Rp) with a metric by defining the quadratic
Monge-Kantorovich, or quadratic Wasserstein distance between µ and ν as

W2(µ, ν) = T2(µ, ν)1/2. (5)

A probability measure π in Π(µ, ν) realizing the infimum in (4) is called an optimal coupling. This
vocabulary transfers to a random vector (X1, X2) with distribution π.

3
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When dealing with a collection of distributions µ1, . . . , µn, we can define a notion of variation
of these distributions. For any ν ∈ W2(Rp), set

Var(ν) =
n∑
i=1

W 2
2 (ν, µi).

Finding the distribution minimizing the variance of the distributions has been tackled when defining
the notion of barycenter of distributions with respect to Wasserstein’s distance in the seminal work
of ?. More precisely, given p ≥ 1, they provide conditions to ensure existence and uniqueness of
the barycenter of the probability measures (µi)1≤i≤n with weights (λi)1≤i≤n, i.e. a minimizer of
the following criterion

ν 7→
n∑
i=1

λiW
2
2 (ν, µi). (6)

Along the last two years several works have studied empirical properties of the barycenters and
their applications to several fields. We refer for instance to ?, ? and references therein. Hence
the Wasserstein barycenter or Fréchet mean of distribution appears to be a meaningful feature to
represent the mean variations of a set of distributions.

This notion of Wasserstein barycenter has been recently extended to distributions defined on
W2(W2(Rp)). Let P be a distribution in W2(W2(Rp)) and consider µ1, . . . , µn i.i.d probabilities
drawn according to the distribution P. In this framework, the Wasserstein distance between distri-
butions onW2(Rp) is defined, for any ν ∈ W2(Rp), as

W 2
2 (P, δν) =

∫
W 2

2 (ν, µ)dP(µ). (7)

If µ̃ is a random distribution with distribution P this corresponds to

W 2
2 (P, δν) = E{µ̃∼P}W 2

2 (µ̃, ν).

Note that we will use the same notations for the Wasserstein distances over distributions inW2(Rp)
and over distributions on distributions inW2(W2(Rp)). The spaceW2(W2(Rp)) inherits the proper-
ties of the spaceW2(Rp) and is the good space to generalize the asymptotic properties of sequences
of Wasserstein barycenters.

Actually, we define as a Wasserstein barycenter of P, a probability µ inW2(Rp) such that, if it
exists, ∫

W 2
2 (µ, µ)dP(µ) = inf{

∫
W 2

2 (ν, µ)dP(µ), ν ∈ W2(Rp)}.

First, we point out that the notion of barycenter developed in (6) corresponds also to the barycen-
ter of the atomic probability P on the Wasserstein space, defined by

P =
n∑
i=1

λiδµi .

Then, we recall the following theorem from ? following ? that guarantees the existence and unique-
ness of this barycenter under some assumptions.

4



GAUSSIAN PROCESS FORECAST WITH MULTIDIMENSIONAL DISTRIBUTIONAL ENTRIES

Theorem 1 (Existence of a Wasserstein Barycenter) Let P ∈ W2(W2(Rp)). Assume that every
distribution in the support of P is absolutely continuous with respect to Lebesgue measure on Rp.
Then there exists an unique distribution µ ∈ P defined as

µ = arg min
ν∈W2(Rp)

{∫
W 2

2 (ν, µ)dP(µ)
}
. (8)

Using the expression (7), we can see that Theorem 1 can be reformulated as stating the existence
of the metric projection of P onto the subset ofW2(W2(Rp)) composed of Dirac measures.

Consider a sample of i.i.d random distributions µi, i = 1, . . . , n drawn with distribution P and
set µ its barycenter. Let for fixed n, µn be the empirical barycenter of the µ1, . . . , µn, defined as

n∑
i=1

λiW
2
2 (µn, µi) = inf

{
n∑
i=1

λiW
2
2 (ν, µi), ν ∈ W2(Rp),

}

with λ1 = ... = λn = 1. This empirical barycenter exists and is unique as soon as one of the µi is
absolutely continuous w.r.t Lebesgue measure in Rp.

The following theorem states that under uniqueness assumption the empirical Wasserstein barycen-
ter µn converges to the population Wasserstein barycenter µ.

Theorem 2 Assume that P belongs toW2(W2(Rp)) and that its barycenter is unique. Let µ1, ..., µn
be independently drawn from P and let µn be defined as above. Then the empirical barycenter µn
is consistent in the sense that when n goes to infinity we have

W2(µ, µn) −→ 0, (a.s).

Hence when considering random distributions drawn from a probability P, the barycenter µ
enjoys some stability properties. Moreover it can be consistently estimated by its empirical counter-
part. This provides a framework to build a kernel for Gaussian Processes indexed by distributions.

3. Construction of a kernel on multidimensional distributions

Let P ∈ W2(W2(Rp)) satisfies the condition of Theorem 1. Consider a sample of i.i.d distributions
µi, i = 1, . . . , n drawn with distribution P and set µ the barycenter of P. Let for fixed n, µn be the
empirical barycenter of the µ1, . . . , µn, defined as in Section 2.2. The main idea consists in using
optimal transportation maps to quantify the correlations between the observation of the process, that
is to say to define a covariance kernel based on the Wasserstein distance.

For µ ∈ W2(Rp), let Tµ, Tµ,n : Rp → Rp be the optimal transportation maps defined by

Tµ]µ = µ , Tµ,n]µ = µn,

where f]π = π ◦ f−1 is the push-forward measure of a function f from a measure π, and

||id− Tµ||L2(µ) =W2(µ, µ) , ||id− Tµ,n||L2(µ) =W2(µ, µn).

Let also, for i = 1, ..., n Ti = Tµi and Ti,n = Tµi,n.

5
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Note that the maps Tµ and Tµ,n are uniquely defined when µ is absolutely continuous w.r.t.
Lebesgue measure. Indeed, because of the assumption on P, both the barycenter and the empiri-
cal barycenter are absolutely continuous w.r.t Lebesgue measure on Rp. Similarly, T1, ..., Tn and
T1,n, ..., Tn,n are uniquely defined.

We point out that the existence of transportation maps that can be considered as gradients of
convex functions is commonly referred to as Brenier’s theorem and originated from Y. Brenier’s
work in the analysis and mechanics literature in ?. Much of the current interest in transportation
problems emanates from this area of mathematics. We conform to the common use of the name.
However, it is worthwile pointing out that a similar statement was established earlier independently
in a probabilistic framework in ? : they show existence of an optimal transport map for quadratic
cost over Euclidean and Hilbert spaces, and prove monotonicity of the optimal map in some sense
(Zarantarello monotonicity).

We will construct a valid kernel using the maps T−1µ , on the Hilbert space L2(µ), for absolutely
continuous distributions µ.

In the following, we provide a generic way to construct this type of functional covariance func-
tions. Consider a continuous function F : R+ → R, so that, for any d ∈ N, the function

K := Cd × Cd 7→ R
(u, v)→ K(u, v) = F (‖u− v‖2),

is a positive definite kernel. Then consider the following function K onW2(Rp)×W2(Rp) defined
by

K(µ, ν) = F
(
‖T−1µ − T−1ν ‖2L2(µ)

)
, (9)

where µ is the barycenter of P defined in Theorem 1.

Theorem 3 The kernel defined in (9) is a covariance kernel over absolutely continuous distribu-
tions inW2(Rp).

The proof relies on the following Proposition which provides a generic way of constructing
covariance kernels on an Hilbert space provided we have covariance kernels on Cd × Cd for any
d ∈ N. Applied with H = L2(µ), it proves the previous theorem.

Proposition 1 (Validity of Covariance on distributions) Let F : R+ → R be such that, for any
d ∈ N, the function K : Cd × Cd → R defined by K(u, v) = F (||u− v||) is non-negative definite.
Let KH be the function defined on an Hilbert space H with norm ‖.‖H as, for all (f, g) ∈ H2,
KH(f, g) = F (‖f − g‖H). Then KH is non-negative definite.

Furthermore, assume that for any d ∈ N and for any pairwise different u1, . . . , un ∈ Cd, the
matrix (F (‖ui − uj‖){i,j} is invertible. Then for pairwise distinct f1, . . . , fn in H , the matrix
(KH(fi, fj)){i,j} is invertible.

The previous Proposition provides a generic way of construction covariance or kernels on
Hilbert spaces provided we have a valid covariance model on Cd × Cd.

When P is not observed, we are only given the sample of random distributions. Hence only the
empirical version Pn = 1

n

∑n
i=1 δµi is available. Hence, we need to approximate the barycenter µ

by its empirical counterpart µn . Let, for a function F satisfying the condition of Proposition 1,

Kn(µ, ν) = F (‖T−1µ,n − T−1ν,n‖2L2(µn)
),

6
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be the empirical kernel. We want to prove that this empirical kernel provides a good approximation
of the valid covariance kernel K. Actually, using the consistency property of Theorem 2, the em-
pirical barycenter is a consistent estimate for µ. Hence we can show that the empirical covariance
kernel converges to the true covariance kernel.

Proposition 2 (Consistency of Kernel) Let F in (9) be continuous. This empirical kernel is a
good approximation of the true covariance kernel in the sense that, for any two fixed absolutely
continuous measures µ and ν inW2(Rp), we have

Kn(µ, ν)→ K(µ, ν)

a.s. when n goes to infinity.

Proof Using the continuity of the function F , it is enough to show that a.s.

‖T−1µ,n − T−1ν,n‖2L2(µn)
− ‖T−1µ − T−1ν ‖2L2(µ) −→ 0.

Lemma 7, whose proof is presented in the Appendix, leads to the result.

In the next Corollary, we show that the consisteny result in Proposition 2 implies that the condi-
tional means and variances based on the empirical kernel asymptotically coincide with those based
on the true kernel.

Corollary 4 LetN ∈ N and let µ1, . . . , µN , µ be fixed absolutely continuous measures inW2(Rp).
Let y = (y1, . . . , yN )

> be fixed in RN . SetR = [K(µi, µj)]1≤i,j≤N and assume thatR is invertible.
Let Y be a Gaussian process with zero mean function and covariance function given by (9). Then

E(Yµ|Yµ1 = y1, . . . , YµN = yN ) = r>µR
−1y

with rµ = (K(µ, µ1), . . . ,K(µ, µN ))
> . Let

En(Yµ|Yµ1 , . . . , YµN ) = r>µ,nR
−1
n y

with rµ,n = (Kn(µ, µ1), . . . ,Kn(µ, µN ))
> and Rn = [Kn(µi, µj)]1≤i,j≤N . Also

Var(Yµ|Yµ1 = y1, . . . , YµN = yN ) = K(µ, µ)− r>µR−1rµ

and we let
Varn(Yµ|Yµ1 , . . . , YµN ) = Kn(µ, µ)− r>µ,nR−1n rµ,n.

Then, a.s. as n→∞,

En(Yµ|Yµ1 , . . . , YµN )→ E(Yµ|Yµ1 , . . . , YµN
and Varn(Yµ|Yµ1 , . . . , YµN )→ Var(Yµ|Yµ1 , . . . , YµN ).

7
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Proof The Corollary is a direct consequence of the facts that N is fixed as n → ∞ and that R is
invertible.

Finally, let us give an example of covariance kernels onW2(Rp) obtained from our construction.
For any σ2 > 0, ` > 0, s ∈ [0, 2] the function R+ → R defined by

Fθ(x) := σ2 exp(−(x/`)s), θ := (σ, `, s),

satisfies the condition of Proposition 1 (see e.g. ?). Hence, the function K defined by

Kθ(µ, ν) := σ2 exp
(
−
[
‖T−1µ − T−1ν ‖L2(µ)/`

]s)
is a covariance kernel on W2(Rp). Other examples can be obtained from the Matérn covariance
function ?.

Note that when considering a kernel K, a natural property to be studied would be its universal-
ity. Actually, a kernel is said to be universal on Ω ⊂ W(Rp) as soon as the space generated by its
linear combinations µ ∈ W(Ω) 7→

∑n
i=1 αiK(µ, µi) ∈ R can generate all continuous functions

on W(Ω). The general form (9) of the kernel may provide uniform kernels under regularity as-
sumptions on the transportation maps Ti. More precisely injectivity and continuity are required as
pointed out in ? to get a universal kernel. Yet regularity of transportation maps in general dimen-
sions is a difficult issue that has received a lot of attention in the last years see for instance to ? and
such conditions can not be guaranteed in a very general framework but could only be studied for
very particular class of distributions, leading to too restrictive cases, which are not at the heart of
this paper.

4. Asymptotic Properties

4.1. Gaussian processes on Hilbert spaces

In this section, we consider a parametric set of covariance functions on balls of Wasserstein space,
namely B2,L,µ(Rp) where B2,L,µ(Rp) = {µ ∈ W2(Rp);W2(µ, µ) ≤ L} for a fixed L <∞ and for
µ as in Section 3. This parametric set is {Kθ; θ ∈ Θ}, with Θ ⊂ Rq for q ∈ N and where for all
θ ∈ Θ, Kθ is a positive definite kernel on B2,L,µ(Rp). We further consider that for any θ ∈ Θ, for
any µ, ν ∈ B2,L,µ(Rp), we have

Kθ(µ, ν) = Fθ(‖T−1µ − T−1ν ‖2L2(µ)), (10)

with the notation of Section 3. We assume also that Fθ satisfies the condition of Proposition 1 for
all θ ∈ Θ.

Hence, for θ ∈ Θ, Kθ is the covariance function of a Gaussian process defined on

B2,L,µ = {f ∈ L2(µ), ||f − id||L2(µ) ≤ T}.

The space B2,L,µ is a a bounded subset of a Hilbert space with an infinite countable basis. Hence,
in the rest of the section, we study some asymptotic properties of Gaussian processes indexed by a
bounded subset of an Hilbert space.

8
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4.2. Microergodic covariance parameters

Let H be a Hilbert space with an infinite countable basis (hi)i∈N. Let h0 ∈ H be fixed and let
B2,L = {h ∈ H; ||h−h0||H ≤ L}. Let F = RB2,L be the set of functions from B2,L to R. Let F be
the cylinder sigma algebra on F generated by the functions f → (f(h1), ..., f(hr)) for any r ∈ N
and h1, ..., hr ∈ H. For any θ ∈ Θ, let Pθ be the measure on (F ,F) equal to the law of a Gaussian
process on B2,L with mean function zero and covariance function (h1, h2) → Fθ(||h1 − h2||H).
Then, following ?, we say that the covariance parameter θ is microergodic if, for any θ1, θ2 ∈ Θ with
θ1 6= θ2, the measures Pθ1 and Pθ2 are orthogonal, that is there exists A ∈ F so that Pθ1(A) = 1
and Pθ2(A) = 0.

For Gaussian processes indexed by a fixed bounded subset of Rd, for d ∈ N, microergodicity
is an important concept. Indeed, it is a necessary condition for consistent estimators of θ to exist
under fixed-domain asymptotics ?, and a fair amount of work has been devoted to showing microer-
godicity or non-microergodicity of parameters, for various models of covariance functions ???. In
this section, we extend these types of results to Gaussian processes indexed by a bounded subset of
H.

4.3. A general microergodicity result

In the next theorem, we show that, under very mild assumptions, the covariance parameter θ is
microergodic in our setting.

Theorem 5 Assume that there does not exist θ1, θ2 ∈ Θ, with θ1 6= θ2, so that t→ Fθ1(t)−Fθ2(t)
is constant on [0, 2L]. Then the covariance parameter θ is microergodic.

In Theorem 5, the condition on the parametric family {Fθ; θ ∈ Θ} holds for all the commonly
used families of covariance functions which are used when applied to norms of differences of vec-
tors in Rd. These commonly used families include notably the Matérn covariance functions, the
generalized Wendland covariance functions, the spherical covariance functions and the power ex-
ponential covariance functions ???. Hence, Theorem 5 shows that it is possible that consistent
estimators exist for θ, in many parametric models of covariance functions of the form (10).

Finally, consider a family of covariance functions {K̃θ; θ ∈ Θ} on Rd satisfying K̃θ(x1, x2) =
Fθ(||x1 − x2||) with Fθ satisfying the assumption of Theorem 5 and with ||.|| the Euclidean norm.
Then, one can see that if θ in microergodic for d1 ∈ N, it is also microergodic for any d2 ≥ d1 (see
also ?). That is, an higher dimension of the input space yields more microergodicity. In agreement
with this fact, Theorem 5 can be interpreted as follows: when d is infinite, the covariance parameter
θ is always microergodic.

5. Computation aspects and an illustration

In practice, computing optimal transportation maps is a difficult issue in the general case, especially
when the dimension of the problem increases.

A first solution consists, in many cases in approximating it by an empirical counterpart. Let
µp and νp be empirical measures sampled from µ and ν respectively. Then the optimal Monge
map T]µ = ν can be replaced by T p] µp = νp , see e.g. ? (Theorem A.1). In this case problem of
finding T p is reduced to the solution of assignment problem with quadratic cost and can be solved
by adagio R-package by ?.

9
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In some special cases, the optimal transportation maps can be written down explicitly only for
some particular class of admissible transformations. An example of explicit calculations is given by
a family of Gaussian distribution. Consider a distribution over some subset of covariance matrices
PS , which generates the unique population barycenter µ = N (0, S).

Let {µi}i=1,...,n be a family of observed random Gaussian distributions with zero mean and
non-degenerated covariance Si : µi = N (0, Si) , Si ∼ PS . An empirical barycenter is re-
covered uniquely: µn = N (0, Sn) with Sn a solution of the following fixed-point equation
Sn = 1

n

∑(
S
1/2
i SnS

1/2
i

)1/2 . This result is well known and has been described in many paper,
see for instance in the seminal work ?. The solution can be obtained by an iterative method, pre-
sented in ?.

The setting allows to write down an optimal transport plan between Ti between µi and µ and
its inverse explicitly:

Ti = S
−1/2
i

(
S
1/2
i SS

1/2
i

)1/2
S
−1/2
i , T−1i = S

−1/2(
S
1/2
SiS

1/2)1/2
S
−1/2

.

In this case, we can compute the distance between the transport plans in L2(µ) using the expression
in (5) ‖T−1i − T−1j ‖2L2(µ), as the distance is the variance of a linear transform of Gaussian random
variable:

‖T−1i − T−1j ‖
2
L2(µ) =

∥∥∥S−1/2[(S1/2
SiS

1/2)1/2 − (S1/2
SjS

1/2)1/2]1/2∥∥∥2
F
.

The same expression holds for
∥∥T−1i,n −T

−1
j,n

∥∥2
L2(µ)

. We can see that in this case the kernel amounts
to compute a natural distance between the two distributions µi and µj obtained by the scale defor-
mation S1/2

i X and S1/2
i X of a Gaussian random variable X ∼ N (0, Id). This distance is then

used through any kernel which provides some insights on a proper notion of covariance between
processes indexed by these two distributions.

In what follows we present some simulations to highlight the consistency of the empirical ker-
nel we simulated. For this we generate covariance matrices Si as Si = AiA

′
i , where Ai =

(ajk)
d
j,k=1, ajk ∼ Unif[5, 15] . Fig. 1 illustrates Proposition 2 for Gaussian distributions on Rd ,

d ∈ {4, 7, 15, 30} while Table 1 provides the estimation error.

Table 1: Error

n = 20 n = 140 n = 260 n = 380 n = 500 n = 620
d = 4 1.52 0.69 0.16 0.29 0.24 0.14
d = 7 2.08 0.59 0.17 0.19 0.11 0.14
d = 15 0.91 0.12 0.09 0.08 0.05 0.05
d = 30 0.90 0.13 0.05 0.03 0.04 0.02

6. Conclusion and Future Directions

In this work, we have provided a theoretical way to use Wasserstein barycenters in order to define
general kernels using optimal transportation maps. Considering the distance between the optimal
transportation maps provide a natural way to quantify correlations between the values of a process

10
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Figure 1: Convergence of kernels
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indexed by the distribution and provides a generalization to multi-dimensional case of the work in ?.
Using barycenter requires that the distributions are drawn according to the same measure over the
set of distributions. This restricts the framework of the study to the case where the Gaussian process
is defined on the support of this measure. For applications, this does not a play a too important
feature since inputs are often simulated according to a specified distribution. Yet for theoretical
issues, this sets the frame of this study to the infill case and not the asymptotic frame. In this case,
few results exist in the statistical literature on Kriging, and thus we focused on micro-ergodicity of
the parameters, proving that consistent estimate can be studied.
Finally contrary to the one-dimensional case, computational issues arise naturally when the Wasser-
stein distance is required. Hence the computation of a barycenter with respect to Wasserstein dis-
tance is a difficult optimization program, unless the distributions are Gaussian, leading to tractable
computations as shown in Section 5 . Yet this idea of linearization around the barycenter to obtain
a valide covariance kernel could be used and generalized to regularized Wasserstein distance using
methods proposed in ? for instance to provide a more tractable way of building kernels.

Appendix A. Proofs

Proof of Proposition 1

Proof Let f1, . . . , fn in H and consider the matrix C̃ = (< fi, fj >H){i,j}. This matrix is a
Grammian matrix in Rn×n hence there exists a non negative diagonal matrix D and an orthogonal
matrix P such that

C̃ = PDP
′
= PD1/2D1/2P

′
.

Let e1, . . . , en be the canonical basis of Rn. Then

eiC̃e
′
j = uiu

′
j

where ui = eiPD
1/2. Note that the ui’s are vectors in Cn that depend on the f1, . . . , fn. Hence we

get that
< fi, fj >H=< ui, uj >

where <,> denotes the usual scalar product on Cn. Hence we get that for any functions f1, . . . , fn
in H there are u1, . . . , un in Cn such that ‖fi − fj‖H = ‖ui − uj‖. So any covariance matrix that
can be written as [F (‖fi − gj‖H)]i,j can be seen as a covariance matrix [F (‖ui − uj‖)]i,j on Cn
and inherits its properties. The invertibility and non-negativity of this covariance matrix entail the
invertibility and non-negativity of the first one, which proves the result.

Proof of Proposition 2

Recall that the empirical barcyenters (µn)n is a sequence of continuous measures converging to
µ in 2 -Wasserstein distance: W2(µn, µ) → 0 as n → ∞ and Rn]µ = µn with W 2

2 (µ, µn) =
||Rn||L2(µ).

Lemma 6 Fix some distribution ν absolutely continous with respect to Lebesgue measure and let
T = Tν and Tn = Tν,n. Then it holds a.s.∥∥T − Tn∥∥2L2(ν)

−→ 0, as n→∞.

12
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Proof Fix n s.t. W2(µn, µ) = εn . Consider
∥∥id − Rn ◦ T

∥∥
L2(ν)

. By change of variables and
triangle inequality one obtains∥∥id−Rn ◦ T

∥∥
L2(ν)

=
∥∥T−1 −Rn∥∥L2(µ)

≤
∥∥T−1 − id

∥∥
L2(µ)

+
∥∥Rn − id

∥∥
L2(µ)

≤W2(ν, µ) + εn ≤W2(ν, µn) + 2εn.

Since Tn is the optimal transport map from ν to µn we recall that W2(ν, µn) =
∥∥id− Tn

∥∥
L2(ν)

. So
due to the arbitrary choice of n it follows∣∣∣∥∥id−Rn ◦ T

∥∥
L2(ν)

−
∥∥id− Tn

∥∥
L2(ν)

∣∣∣ −→
n→∞

0. (11)

Now we are ready to prove, that
∥∥Tn − T∥∥L2(ν)

n→∞−→ 0 . Assume the claim is wrong. Assume the
claim is wrong:

Tn
n→∞−→ T1, Rn ◦ T

n→∞−→ T2, ‖T1 − T2‖ > ε.

Thus ∥∥id− Tn
∥∥
L2(ν)

n→∞−→
∥∥id− T1

∥∥
L2(ν)

,
∥∥id−Rn ◦ T

∥∥
L2(ν)

n→∞−→
∥∥id− T2

∥∥
L2(ν)

,

which contradicts to (11)

The next lemma is a key ingredient in the proof of the fact that the true kernel can be replaced
by its empirical counterpart.

Lemma 7 Consider two fixed absolutely continuous measures µ and ν inW2(Rp). We have a.s.∣∣∣∥∥T−1µ − T−1ν

∥∥2
L2(µ)

−
∥∥T−1µ,n − T−1ν,n

∥∥2
L2(µn)

∣∣∣ −→ 0, as n→∞.

Proof Consider
∥∥T−1µ,n − T−1ν,n

∥∥
L2(µn)

. Change of variables and triangle inequality yield∥∥T−1µ,n − T−1ν,n

∥∥
L2(µn)

=
∥∥T−1µ,n ◦Rn − T−1ν,n ◦Rn

∥∥
L2(µ)

≤
∥∥T−1µ,n ◦Rn − T−1µ

∥∥
L2(µ)

+
∥∥T−1ν,n ◦Rn − T−1ν

∥∥
L2(µ)

+
∥∥T−1µ − T−1ν

∥∥
L2(µ)

.

Therefore one obtains∥∥T−1µ,n − T−1ν,n

∥∥
L2(µn)

−
∥∥T−1µ − T−1ν

∥∥
L2(µ)

≤
∥∥T−1ν,n ◦Rn − T−1ν

∥∥
L2(µ)

+
∥∥T−1µ,n ◦Rn − T−1µ

∥∥
L2(µ)

n→∞−→ 0

where the last relation holds due to Lemma 6.

Proof of Proposition 5

13
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Proof Without loss of generality, we can assume that h0 = 0 ∈ H. Let θ1, θ2 ∈ Θ, with θ1 6= θ2.
Then, there exists t∗ ∈ [0, L] so that Fθ1(0)− Fθ1(2t∗) 6= Fθ2(0)− Fθ2(2t∗).

For any n ∈ N, let e1, ..., en ∈ H satisfy (ei|ej)H = 1i=j . Consider the 2n elements
(f1, ..., f2n) made by the pairs (−t∗ei, t∗ei) for i = 1, . . . , n. Consider a Gaussian process Y
on B2,L with mean function zero and covariance function Kθ1 . Then, the Gaussian vector Z =
(Y (fi))i=1,...,2n has covariance matrix C given by

Ci,j =


Fθ1(0) if i = j

Fθ1(2t
∗) if i even and j = i+ 1

Fθ1(2t
∗) if i odd and j = i− 1

Fθ1(
√
2t∗) else.

Hence, we have C = D +M where M is the matrix with all components equal to Kθ1(
√
2t∗) and

where D is block diagonal, composed of n blocks of size 2× 2, with each block equal to

B2,2 =

(
Fθ1(0)− Fθ1(

√
2t∗) Fθ1(2t

∗)− Fθ1(
√
2t∗)

Fθ1(2t
∗)− Fθ1(

√
2t∗) Fθ1(0)− Fθ1(

√
2t∗)

)
.

Hence, in distribution, Z = M + E, with M and E independent, M = (z, ...., z) where z ∼
N (0,Kθ1(

√
2t∗)) and where the n pairs (E2k+1, E2k+2), k = 0, ..., n − 1 are independent, with

distribution N (0, B2,2). Hence, with Z1 = (1/n)
∑n−1

k=0 Z2k+1, Z2 = (1/n)
∑n−1

k=0 Z2k+2 and
E = (1/n)

∑n−1
k=0(E2k+1, E2k+2)

t, we have

B̂ :=
1

n

n−1∑
i=0

(
Z2i+1 − Z1

Z2i+2 − Z2

)(
Z2i+1 − Z1

Z2i+2 − Z2

)t

=
1

n

n−1∑
i=0

(
E2i+1

E2i+2

)(
E2i+1

E2i+2

)t
− EEt

→p
n→∞ B2,2.

Hence, there exists a subsequence n′ → ∞ so that, almost surely B̂ → B2,2 as n′ → ∞. Hence,
almost surely B̂11 − B̂1,2 → Kθ1(0)−Kθ1(2t

∗) as n′ →∞. Hence, the set

A =
{
g ∈ F ; B̂2,2 (g(f1), ....g(f2n′))→n′→∞ Fθ1(0)− Fθ1(2t∗)

}
satisfies Pθ1(A) = 1. With the same arguments, we can show Pθ2(B) = 1, where

B =
{
g ∈ F ; B̂2,2 (g(f1), ....g(f2n′′))→n′′→∞ Fθ2(0)− Fθ2(2t∗)

}
where n′′ is a subsequence extracted from n′. SinceA∩B = ∅, it follows that Pθ2(A) = 0. Hence,
θ is microergodic.
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