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Abstract

Tail risk protection is in the focus of the financial industry and requires solid mathematical
and statistical tools, especially when a trading strategy is derived. Recent hype driven by
machine learning (ML) mechanisms has raised the necessity to display and understand the
functionality of ML tools. In this paper, we present a dynamic tail risk protection strategy
that targets a maximum predefined level of risk measured by Value-At-Risk while controlling
for participation in bull market regimes. We propose different weak classifiers, parametric and
non-parametric, that estimate the exceedance probability of the risk level from which we derive
trading signals in order to hedge tail events. We then compare the different approaches both
with statistical and trading strategy performance, finally we propose an ensemble classifier
that produces a meta tail risk protection strategy improving both generalization and trading
performance.
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1 Introduction

"Black swan events" are occurring from time to time. After 2008, investors in the DAX had to
wait 5 years before recovering their loss. The Nikkei stock index still has not yet recovered, even
25 years after the bubble burst. The cryptocurrency market has plunged drastically at the end of
2017. What choices are left to investors in these situations ?

Indeed, it is one of the main challenges of quantitative finance to build models and develop
tools able to protect investments from such extreme events (Bollerslev and Todorov; 2011). The
first risk management strategy addressing the latter is diversification but Longin and Solnik (2001)
show that when financial markets exhibit huge downturn periods, correlation significantly increase,
hence are counteracting the effect of portfolio diversification. Another strategy for tail risk pro-
tection is option based, where the risk manager is long in put options. Yet, loss aversion leads
to high prices of put options (Kozhan et al. (2013), Packham et al. (2017)). A solution to escape
this dilemma is to build a strategy with dynamic asset allocation. The risk manager creates an
asymmetric risk profile with participation in upside market and protection against severe loss. This
trading strategy is often called tail risk protection strategy by practitioners and is much more cost
efficient and flexible than the options strategy (Franke et al.; 2019). In order to pursue such a
strategy, one needs to predict distributional properties of the portfolio. This, of course, is obviously
impossible since not only distributions but also their parameters change in time. This motivates
our paper where we hint on comparing Econometrics tools, Machine learning (ML) and modern
Local Parametric Approach (LPA). We present a dynamic tail risk protection strategy that targets
a maximum predefined level of risk measured by Value-At-Risk while controlling for participation
in bull market regimes. We propose different weak classifiers, parametric, based on GARCH tool,
and non-parametric using ML, that estimate the exceedance probability of the risk level from which
we derive trading signals in order to hedge tail events.

The GARCH tool with normally distributed innovations allows us to catch volatility clusters
and yields good volatility forecasts. The application of Extreme Value Theory (EVT) to GARCH
residuals provides insight into the tail probabilities, that is, the likeliness of an extreme loss. Nev-
ertheless, econometric models rely on strong assumptions and cannot deal with structural breaks
that happen in financial time series.

ML has been successful in many applications during the last years thanks to its generalization
power on large datasets, but, in quantitative finance, in particular for financial returns forecast-
ing, ML did not prove its superiority in comparison with its application to text analysis or image
recognition, where Deep Learning (DL) tools became state-of-the-art. Moreover, the black box
effect of DL makes the industry reluctant to invest in such models. In theory, DL can extract
information from non-linear relations in high dimensional space, so for quantitative finance practi-
tioners, it should be natural to use the machine learning tool box. Nevertheless, DL models suffer
from overfitting and can be very difficult to train. If they offer similar prediction accuracy than
econometrics, it might be preferable to use the latter with regards to its interpretability, lower
complexity and cheaper computational costs.

The cryptocurrency market has experienced an exponential growth during 2017, where BTC
peaked at $19 783.06 on December 17th 2017 and dropped below $14 000 24 hours later, losing
one third of its value. One year later, on December 7th 2018, BTC price briefly dipped below
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$3 300, a 76% drop from the previous year and a 15-month low. At the time of writing, the
cryptocurrency market is experiencing a new large uptrend as swathes of institutional investors
are gaining new interest because of the launch of new futures contracts on both regulated and un-
regulated cryptocurrency exchanges. Central banks also reacted to private initiatives of launching
digital currencies, such as Facebook’s Libra, as they may have the potential to dilute the main
power of central banks - to control the supply of money to the economy. With high volatility and
new interest in the cryptocurrency market, the BTC ecosystem is a perfect environment to show
the effectiveness of tail risk strategy. Indeed, its high volatility promises high gains in upward
movement of the price. Our goal is then to protect investors from large downturns of the market
through an accurate prediction of tail risk.

Since Basel committee on Banking Supervision Amendment to incorporate market risk (1996),
regulators imposed the use of certain metrics to measure the risk of investments, such as Value-At-
Risk (VaR) and Expected-Shortfall (ES). In order to meet both investors’ and regulators’ will, we
build a risk protection strategy that controls the VaR of our portfolio by ensuring that it is below
a certain level, denoted as target VaR.

As high volatility segments often precede market swings, the GARCH model is a natural tool for
tail risk protection, since GARCH catches these volatility clusters. Nevertheless, a volatility based
risk management strategy forces us to divest in such period, reducing alpha possibilities in case of
positive movement. Since financial returns have heavy tails, the EVTGARCH (McNeil and Frey;
2000) allows us to improve our forecast of the tail event direction. Indeed, seeking alpha, excess
return over a benchmark, has become more challenging for banks and institutional investors which
follow strong regulations based on VaR estimates. We address this problem here by focusing on
dynamic risk management based on econometrics, explaining stylized facts of financial time series
with parametric approaches, and non- or local parametric methods, in particular the LPA from
Spokoiny (2009a), Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) neural
networks, which catches non-linear features with memory.

Our contribution is a rigorous comparison of GARCH and ML based tools in the context of
extreme loss prediction based on their forecast in a classification scheme. On top, we show how
to use standard Ensemble method as a meta classifier that produces a hybrid trail risk protection
strategy, improving both generalization and trading performance by taking advantage of each
approach. Finally, we evaluate our strategy with a realistic backtest including trading fees, by
comparing it with classical buy-and-hold benchmark and other recent machine learning oriented
tail risk protection strategies, such as the constant target VaR from Rickenberg (2019) and the
Varspread strategy from Packham et al. (2017).

The results showed here will certainly motivate practitioners to apply ML techniques in order
to improve GARCH performance. We provide comparison metrics such as forecast error, classifi-
cation metrics and backtest results of our tail risk strategies on the cryptocurrency market with
BTC investment. We also provide robustness checks through cross-validation.

This paper is structured as follows. First we review the current literature of our subject, then
we explain the trading strategy we aim to build. In the third and fourth part, we explain the
theoretical models used to build our strategy. In the final section, we present our results.
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2 Background & Literature review

Volatility as a risk measure ? A good risk measure must be tailored to the investor’s
preferences which are often unknown in practice. Starting from preferences, practitioners often
make assumptions in order to build an "optimal risk measure", corresponding to an imagined
investor’s goal. A large part of the financial literature studies volatility as a risk measure, since it
is nicely tied to Gaussian and LS techniques. For example, the VIX, referred to as the "investor fear
gauge", is often taken as a sentiment indicator since volatility reflects investors’ aversion to risk.
The mean-variance portfolio, developed by Markowitz, is built under such assumptions where the
weights of the risky assets included in the portfolio are derived from their volatility. Nevertheless,
financial returns often have fat-tails and are not normally distributed, which Markowitz theory
does not account for. Finally, volatility, being symmetric, is not realistic as a risk measure, since it
does not take into consideration investors’ loss aversion, weighting equally volatility associated with
gains and losses. Most investors are more concerned about downside risk, or losses, rather than
volatility (Bollerslev et al.; 2015). In this paper, our goal is to build a trading strategy avoiding
large losses or tail risk which is better suited for loss averse investors.

Packham et al. (2017) showed that a trading strategy accounting for tail risk can outper-
form simple buy-and-hold and traditional portfolio protection strategies. By using models such as
GARCH with normally distributed innovations and GARCH with innovations following a General-
ized Pareto Distribution (GPD), they built a new criterion for riskiness defined as the evolution of
the estimated Value-At-Risk (VaR) spread between the two models. Thus, in period of increasing
tail risk, this spread is significantly different from 0 which allows the trader to take adequate de-
cisions. We denote this strategy as the Varspread strategy. Rickenberg (2019) compares different
risk measure such as volatility, VaR and Conditional-Value-at-Risk (CVaR), also named Expected
Shortfall (ES), in order to build dynamic trading strategies and find that downside risk measures
outperform volatility in terms of a higher Sharpe Ratio, better drawdown protection and higher
utility gains for mean-variance and loss-averse investors. Happersberger et al. (2019) also focus ES
and VaR forecasts in order to manage dynamic tail risk protection strategies.

All the papers mentioned above and in general the literature of tail risk protection, focus on
predicting risk measures in a regression manner and study the total distribution of the returns
where the goal is to minimize Mean Squared Error (MSE) type measures of fit. Our argument
is that it is not necessary to predict the total distribution of the return, whether it is crucial to
correctly forecast the direction of the tail, in particular since in our case big profits or losses are
at stake (Jordà and Taylor; 2011).

Investors’ preferences Rickenberg (2019) developed a tail risk protection strategy, denoted
target VaR strategy, where the trading signals are calibrated so the VaR of the strategy is constant
over time for a predefined significance level α. The weights of the risky asset in the simple portfolio
consisting of two assets, one risky and one riskyless asset, is a function of a constant level of risk
defined as a VaR level denoted, target VaR, depending on investors’ risk aversion measured by α.
The weights are calibrated so the VaR of portfolio is constant, equals to the target VaR. The target
VaR strategy has the main advantage to be better interpretable for investors who can prescribe
their acceptable loss limit to the trader. Nevertheless, it is assumed that investors’ preferences
are static since the target VaR is fixed and does not depend on t. Such strategy is based on the
standard financial theory assumption that investors are rational and have invariant risk preferences.

However, with the development of Behavioral Finance, numerous studies draw attention on the
fact that investors are often irrational and their preferences change with different situations. The
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early paper of Kahneman and Tversky (1979) shows that investors are more risk averse with gains,
but less with losses. More recently, Wen et al. (2014) study the characteristics of investors’ risk
preferences with different states of gains and losses and show that investors’ risk preferences are
time-varying with them. Indeed, the degree of risk aversion rises with the increasing gains and
that of risk seeking improves with the increasing losses.

Taking into consideration investors’ time-varying preferences, a constant target VaR strategy
is inadequate. Indeed, we should decrease our target VaR in period of gains and increase it in
periods of losses to allow more conservative trades in period of gains and more aggressive ones in
case of losses.

Dynamic tail risk protection strategy Our goal is to build a dynamic tail risk protection with
an adaptive predefined level or risk, adapting to the benchmark’s performance which influences
investors’ preferences, Wen et al. (2014). At constant significance level α, when the benchmark is
experiencing a period of good performance where the gains are increasing, its VaR is decreasing,
thus the investors give more attention to smaller losses and tend to be more risk averse. As follows,
the trader should adapt its strategy and aim for a smaller target VaR. In the inverse situation,
during a period of losses, the tail risk of the benchmark is increasing and the investor only pay
attention to large losses, tending to seek more risk. For example, one could use a threshold as a
function of volatility in order to build a dynamic threshold labeling function as in de Prado (2018),
chapter 3.3. In the next section, we will explain how to build such strategy.

3 Trading strategy

3.1 Tail risk as a risk measure

Tail Risk Definition Throughout this paper, we consider a risky asset, for example one stock,
with price process pt, where t ∈ [0, ..., T ] with T the final period time step. As usual, we define
the one period log-return, where one period is here one hour, as rt = log Pt

Pt−1
and the loss series

−rt. As in Packham et al. (2017), we define the Value-At-Risk for a risk level α, denoted VaRα
t ,

as the α-quantile of the distribution of the loss −rt:

VaRα
t = inf {l ∈ R : P (−rt > l) ≤ 1− α} = inf {l ∈ R : P (−rt ≤ l) ≥ α}

If rt follows an absolutely continuous loss distribution, then the Value-At-Risk can be defined
as an unlikely and severe loss which satisfies:

P(−rt ≤ VaRα
t ) = 1− α

where α is small corresponding to investors’ risk aversion. In practice, the risk level often
takes the value of 0.01, 0.025 or 0.05. The Value-At-Risk characterizes the far right tail of the
distribution of the loss, thus we use it as a measure of tail risk. For example, a VaR = uαt = 0.05 for
α = 0.01 means that returns below -5% only happen 1% of the time. Moreover, for any threshold
u, P(−rt ≥ u) is called the exceedance probability over u.

3.1.1 Tail risk protection strategy

Now, let us consider a simple buy/sell trading strategy where the trader decides at time t either
to enter the market with a full position (he invests the totality of his available capital at time t
into BTC) or to stay out of the market (he sells all available BTC or does not invest capital at

5



time t in order to have all his capital in a risk free asset) based on the information available at
time t denoted Ft. The trader’s decision can be represented as a binary variable, or trading signal,
st ∈ {0, 1} where 1 corresponds to the decision to stay out of the market and 0 to the decision to
fully invest the capital at time t. The return of such strategy is defined for all t ∈ [1, . . . , T ] as
Rt = (1− st−1)rt and the excess return Rt − rt.

Target VaR The goal of tail risk protection is to maximize the expected economic utility of a
risk averse investor which can be represented by the risk-adjusted return of the strategy, where
risk is characterized by the tail behavior of the portfolio. In other words, our goal is to lower
the probability of tail risk, that is, at constant level α, to have a lower portfolio VaR than the
buy-and-hold benchmark strategy which buys the asset at the beginning of the period and sell
it at time T , the end of the period of investment. In parallel, we have two choices to maximize
the return, either we maximize the expected return, following the portfolio selection criterion from
Markowitz (1952), or we can maximize the total return at T , as suggested by Kelly (1956). Since
in our setting, we are optimizing the strategy for multiple periods (Hakansson; 1971) we choose
the latter. We can write the following optimization program:

max

T∑
t=1

(Rt − rt)

s.t.VaRα
t ≤ TVaRα

t

(1)

where VaRα is the portfolio VaR and TVaRα
t is the target VaR for level α given by the investor.

We have the following equivalence, ∀t ∈ [1, . . . , T ]:

VaRα
t ≤ TVaRα

t

P(−Rt ≤ TVaRα
t ) ≥ 1− α (2)

Thus, one relaxes the constant constraint from Rickenberg (2019) and aims at constructing a
trading mechanism with signal s = {s1, . . . , sT } that has a maximum TVaRα. From now on, we
think of fixed α and we will write TVaRα

t as TVaRt for the benchmark Value-At-Risk and VaRα
t

as VaRt for the portfolio.

How to define the signals st ? We define for all t ∈ [0, T − 1]

st = I−rt+1≥TVaRt+1
(3)

and by construction Rt = (1 − I−rt≥TVaRt)rt. Since TVaRt is strictly positive for financial
assets loss series, we have P(−Rt ≤ TVaRt) = 1, thus (2) is verified.

Since we do not know the true distribution of rt and, obviously, at time t, we do not observe rt+1,
we do not know st and we must build estimates based on the observation available in order to make
a trading decision. We estimate the following conditional probability, P(−rt+1 ≥ TVaRt+1 |Ft),
which is the exceedance probability over the threshold TVaRt+1, and decide whether the trader
must close his position st = 1 or stay in the market st = 0.

How to define TVaRα The tail risk target is defined by the investors’ preferences. Here, our goal
is not to study investors’ preferences, but to show how to build trading signals based on estimates
of the exceedance probability over a given risk level. This problem has been well studied in the
literature, for various applications, such as seismic risk assessment (Honegger and Wijewickreme;
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2013), risk assessment for decision making with application to terrorism (Kunreuther; 2002) or
again floods, earthquakes, drought and hurricanes risk management (Lambert et al.; 1994), (Mason
et al.; 2007). For trading strategies, Christoffersen and Diebold (2006) and Linton and Whang
(2007) considered exceedances above 0, whereas (Chung and Hong; 2007) focused on non-zero
thresholds. In particular, Taylor and Yu (2016) studied thresholds that are not close to 0, as this
is of greater relevance for risk management. This is also our interest but we consider extreme
thresholds which are time varying and can be used as tail risk measure.

For illustration, we focus in this paper on different tail risk targets derived from the data itself.
That is we use sample quantiles for different level α computed on the historical losses in a rolling
window manner for different window size. In other words, to describe the investors’ preferences
for the next trading period t + 1, we use the historical VaR of the loss series as tail risk measure
defined for w ∈ [1, T ] as:

∀t ∈ [w, T ], ∀i ∈ [t− w + 1, t],TVaRt+1 = hist-VaRα,w
t = inf {l ∈ R : P (−ri > l) ≤ 1− α} (4)

The main advantage of this risk target is its computational simplicity allowing us to easily build
training labels for our classifiers that we will develop in the next sections. On top, it is adaptable
to investors’ preferences, since using a small rolling window would suit an investor with varying
preferences where the risk target quickly adapts itself to changes in the true return distribution,
while large rolling windows give more stable risk target, corresponding to an investor with static
preferences. In this paper, we will use three window sizes: 24 (one day), 2880 (four months) and
4320 (six months), since we are using hourly data, which are plotted on Figure 1 for α = 0.01. We
give more details about the dataset in the next section. Our choice is motivated by our goal to
study how the tools used here react to different levels of noise in the target variable.

Figure 1: Hourly btc losses and TV aR0.01,w
t for different window size, w = 24 (one day), w = 2880

(four months), w = 4320 (six months)

As we can see on Figure 1 the TVaR0.01,24
t is much more conservative than the TVaR0.01,w

t with
larger w, with much more losses exceeding the risk target. Indeed, we have respectively 0.045,
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0.012 and 0.011 exceedance for the TVaR0.01,w
t with w is 24, 2880 and 4320, where the exceedance

is defined as Ne = 1
T

∑T
t=1−rt ≥ TVaRα

t , that is the proportion of data exceeding the threshold.
A strategy with TVaR0.01,24

t as tail risk target should be much more conservative and hedges much
more losses than the two other risk targets. .

Trader decision How to decide whether we should hedge our position for the next trading
period ? We could build an estimation of the return at the next period, rt+1, in a regression
manner, nevertheless, we are only interested in the distribution of the tail. Thus, in this paper,
we directly approximate the conditional probability classes of the variable st, that is pt, defined
∀t ∈ [0, . . . , T − 1] as:

pt = P(st = 1|Ft) = P(−rt+1 ≥ TVaRα
t+1 |Ft) (5)

From pt, we can make the trading decision ŝt defined for a threshold u ∈ R:

ŝt =

1, if pt ≥ u

0, otherwise
(6)

We can now write the realized return of our strategy, for all t ∈ [1, T ]:

Rt = (1− ŝt−1)rt (7)

4 Machine learning trader

Let Xt ∈ Rp be some input feature vector of dimension p which summarize Ft. The aim is to
approximate the true unknown conditional probability P(st|Xt) with a learning algorithmM for
different risk targets. We consider four different α: 1%, 2.5%, 5% and 10%, and three rolling
windows to compute TVAR: 24, 2880, and 4320. In the next two sections, we present different
modelsM we use as estimator for each risk target. We first present the dataset we use and then
we explain the different models considered.

4.1 Data

We apply the proposed strategy on BTC. We collected 36193 close prices from Poloniex exchange,
using its API, from 2016-01-01 to 2020-02-16 on a hourly basis. We look at intraday frequency,
since it is not rare to observe severe loss at such frequency, due to a relatively higher volatility in
the cryptocurrency market compared to traditional assets.

We split the dataset into two sets, train, from 2016-01-01 to 2019-01-01 00:00:00, and test sets
from 2019-01-01 01:00:00 to 2020-02-16 22:00:00. We keep a relatively large test set in order to
produce a final robust estimation of the out-of-sample trading strategy performance with a large
backtesting period of 9486 observations.

4.2 Neural networks

We first use two different neural network architectures for the trading signals prediction, the Multi-
Layer Perceptron (MLP) and the Long short-term memory neural network (LSTM) architecture
from Hochreiter and Schmidhuber (1997). Neural networks are non-parametric, which allows us to
avoid making strong assumptions on the data that are not met in reality and that is often the case
for financial time series, for example with the normality assumption of financial returns. On top,
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neural networks are universal approximators (Leshno et al.; 1993) which means that, in theory,
neural networks can arbitrarily closely approximate the true process of rt. In particular, LSTM
neural networks are state-of-the-art for many applications such as speech recognition, text extrac-
tion, translation or handwriting recognition, since plain recurrent neural networks are not suited to
non-stationary time series modeling. In finance, Deep learning has been used in various research,
in particular by Franke (1999) and Zhang et al. (2020) for portfolio management or by (Kim and
Won; 2018) for volatility forecasting with LSTM in comparison with GARCH. Nevertheless, one
has yet to prove the superiority of neural networks compared to simpler parametric models in their
application.

4.2.1 Training

Output In order to train the neural networks, we need to build the training input-output pairs.
We could directly use the trading signal st from (3) as output labels, nevertheless, since TVaRα,w

t

belongs to the tail of the loss series, st suffers from sever class imbalance since
∑T
t=w+1 I−rt>TVaR

α,w
t

T �
0.5, which is difficult to handle for machine learning models (REFERENCE). On top, financial re-
turns follow an asymmetric distribution and suffers from the leverage effect (Black; 1976), (Christie;
1982), commonly defined as volatility rising more rapidly when returns are negative than positive.
To address that problem, we introduce a new category for rt, when rt belongs to the right tail of
the distribution, which allow us to control the misclassification cost of the final model. Indeed, let
us introduce the following output variable defined as:

Yt =


1, if − rt < TVaR1−α,w

t

2, if − rt > TVaRα,w
t

0, otherwise

(8)

We can define the predicted strategy signals as a function of the predicted output variable Ŷ as
follows :

ŝt =

1, if Ŷt = 2

0, otherwise
(9)

and we easily derive the unconditional misclassification costs matrix in terms of excess returns.

Prediction
0 1 2

Outcome
0 0 0 r̄0p̄0

1 0 0 r̄1p̄1

2 0 0 r̄2p̄2

where r̄i is the expected return on class i estimated with 1∑T
t=w+1 IYt=i

∑T
t=w+1 rt IYt=i and p̄i

is the weight of class i defined as
∑T
t=w+1 IYt=i
T−w which is the empirical estimate of the unconditional

probability P(Yt = i).
As expected, when using the risk target defined in (4), we can see on table 1 that one has

negative costs for the correct classification of class 2 since r̄2 ≤ 0 and by definition, the conditional
cost for predicting class 2 instead of 1 is much higher than the one for predicting class 2 instead
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Prediction
α w (hours) 0 1 2

0.01
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

0.025
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

0.05
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

0.1
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

Table 1: Class 2 misclassification costs for different TVaRα,w

of 0, since in the former, we miss the opportunity to invest during an extremely positive return
period. Thus, we clearly see that the classifier must correctly predict the sign of the tail events in
order to maximize the strategy return. In order to do so, we use a 3 neurons output layer with
softmax activation function corresponding to the output variable Yt defined in (8).

Input layer As we are interested in understanding whether neural networks can, by themselves,
learn valuable features to produce trading signals and feature selection is not our interest in this
work, we use simple transformations of the returns, which can be seen as momentum features.

In particular, since price time series are not stationary, we use multiple returns instead,
Xp
t = rt−p for different periods p, where rt−p = pt/pt−1−p − 1 and p ∈ {0, 1, 2, 4, 6, 13}. We

also use the normalized difference between the returns and the two class thresholds which should
help identifying a risk-buildup situation, when the returns either explodes toward the upper class
threshold TVaR1−α,w

t or severely drops toward the lower threshold TVaRα,w
t , which are defined

respectively as Uα,wt =
rt−TVaRα,wt
TVaRα,wt

and Dα,w
t =

rt−TVaR1−α,w
t

TVaR1−α,w
t

.
For the MLP, we then use the vector Xt ∈ R8 = (X0

t , X
1
t , X

2
t , X

4
t , X

6
t , X

13
t , D

α,w
t , Uα,wt ) as

input for each risk target. For the LSTM model, since it is a recurrent neural network, we take
advantage of its ability to directly modelize sequential data and we use the same features as above
on a certain historical window of length 24, using one historical day to make a prediction for
the next hour. Thus the features become: Xp

t = (rt−p−23, . . . , rt−p) for p ∈ {0, 1, 2, 4, 6, 13} and
Uα,wt = (

rt−23−TVaRα,wt
TVaRα,wt

, . . . ,
rt−TVaRα,wt
TVaRα,wt

) and Dα,w
t = (

rt−23−TVaR1−α,w
t

TVaR1−α
t

, . . . ,
rt−TVaR1−α,w

t

TVaR1−α
t

). We
use the same input vector as for the MLP, but now Xt is in R24,8. We explain the hidden layer
architecture in the next section.

Finally, we train our classifier, using Keras python library, on the training dataD = {(Xw+1, Yw+1), . . . , (XT , YT )}
with Adam algorithm, which is a stochastic gradient descent method based on adaptive estimation
of first-order and second-order moments of the gradient (Kingma and Ba; 2015) and 128 batch
size.
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4.3 Model selection

4.3.1 Hidden layers architecture

On the train set we performed 10 folds cross-validation for time series, described on figure 3, with
one fold corresponding to one month, in order to test different hidden layers architectures for the
MLP model. In this work, we keep the hidden layers relatively simple in order to show how a
single architecture can effectively extract features for different risk target output. Based on the
cross-validation performance evaluated with AUC score (area under the ROC curve), we choose
the model with highest AUC score between class 1 and 2, while still controlling for robustness.
That is we select the model with highest median AUC score between class 1 and class 2. After
a small tuning, we keep 3 hidden layers, three fully connected layers with 16, 4 and 2 neurons
respectively, as on the Figure 2

Figure 2: Final MLP architecture

As regularization technique, we use the state-of-the-art Dropout layer after the first and the
second hidden layers with a dropout rate of 0.2, in order to prevent overfitting (Srivastava et al.;
2014).

As for the LSTM architectures, we simply change the first two fully connected layers to LSTM
units in order to test whether LSTM can directly improve the performance of the MLP models.
We use the hyperbolic tangent as activation function for the hidden layers.

4.3.2 Strategy parameters and final decision

Any classifier M trained on the dataset D gives for output the probability class pt. Thus the
trading strategy based on M has one parameter, the probability threshold u from which we can
make a trading decision with respect to (6). The optimal parameter must solve the investor’s goal
define in (1) with respect to their risk target. We can now reformulate the optimization problem
as it follows:
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