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Tail event driven networks of SIFIs

Cathy Yi-Hsuan Chen∗, Wolfgang Karl Härdle†, Yarema Okhrin‡

Abstract

The interdependence, dynamics and riskiness of financial institutions are the key fea-

tures frequently tackled in financial econometrics. We propose a Tail Event driven Network

Quantile Regression (TENQR) model which addresses these three aspects. More precisely,

our framework captures the risk propagation and dynamics in terms of a quantile (or ex-

pectile) autoregression involving network effects quantified through an adjacency matrix.

To reflect the nature and risk content of systemic risk, the construction of the adjacency

matrix is suggested to include tail event covariates. The model is evaluated using the SIFIs

(systemically important financial institutions) identified by the Financial Stability Board

(FSB) as main players in the global financial system. The risk decomposition analysis of

it identifies the systemic importance of SIFIs and thus provides measures for the required

level of additional loss absorbency. It is discovered that the network effect, as a function

of the tail probability, becomes more profound in stress situations and brings the various

impacts to the SIFIs located in different geographic regions.
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1 Introduction

Systemic risk threatens financial stability and the functioning of financial markets due to

shocks on liquidity, reduced market confidence and willingness of risk taking. A growing

body of literature discusses macroprudential risk management approaches to study sys-

temic risk with two goals: ensuring financial stability and quantify a risk charge propor-

tional to the relative systemic contribution. Both goals are targeted to inject additional

capital into the financial system to make it more resilient. However, as pointed out by

Bluhm and Krahnen (2014) macroprudential monitoring is still at a very early stage,

quantifying the magnitude of systemic risk and identifying systemically relevant contrib-

utors need more scientific analysis. Without such effort, the supervisory authorities face

difficulties either to set proper capital requirements as a risk buffer against adverse shocks

for every financial institutions or to calculate additional risk charges for systemically im-

portant financial institutions (SIFIs) for their extra negative externalities on the financial

system.

In order to understand the interconnectedness among SIFIs from a system-wide perspec-

tive, one has to study the measure, the degree, and asymmetric nature of systemic risk. To

do so we propose a quantitative and system-wide framework based on a topological net-

work methodology. Network analysis is quite capable of portraying the interplay among

financial institutions and measuring their interconnectedness (see Diebold and Yılmaz,

2014; Barigozzi and Brownlees, 2016). Summarizing their arguments, interconnectedness

of financial institutions on the interbank market is an absolute key to understanding

systemic risk. Interconnectedness captures the situations when financial distress in one

institution subsequently raises the likelihood of financial distress in other institutions

because of their network of contractual relations and interbank lending among them,

leading to a “too-interconnected-to-fail” situation. The complexity of the connections

brings challenges to researchers, fortunately the network analysis ideally presents the

interconnections of a large panel as a graph where the nodes represent the variables/out-

put in the panel, and the edges between each pair of nodes denote their dependencies

corresponding to the variables.

This study proposes modern network techniques for the analysis of dynamic interconnect-
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edness of SIFIs in five aspects. First, we concentrate on the network of SIFIs due to their

systemic relevance. The interconnectedness of SIFIs’ network shall be quantified and kept

monitored. Second, we propose and argue that a network (or “adjacency matrix”) should

be based on tail event measures. The adjacency matrix is constructed by the similarity

of risk profiles of node pairs. The risk profile comprising of various tail risk variables is

more capable to portray the risk structure and represent the diverse risk contents.

Third, the identified SIFIs by Financial Stability Board (FSB) will be allocated to differ-

ent buckets depending on their scores of policy measures proposed by Basel Committee

on Banking Supervision (BCBS) to admit that each SIFI potentially creates different

degrees of contagion. The five buckets correspond to the additional loss absorption ca-

pacities from 1% to 3.5% to ensure the sufficiency of their common equities in case of

the default. However, the methodology proposed by BCBS depends very much on the

choice of policy measures and threshold of scores. Therefore, we present a parsimonious

and intuitive metric for the “aggregate risk” in a network comprised of related entities to

quantify the systemic risk, the resulting systemic risk scores can be used to monitor sys-

temic vulnerability. The risk decomposition from the aggregate systemic risk quantifies

the risk contribution of each node. This way one may study the sensitivity by injecting

nodal risk. For a supervisory purpose, a node with a high degree of connectedness may

thus be monitored more carefully for higher risk increments. In a nutshell, this analytic

decomposition enables identifying the source of systemic vulnerabilities.

Fourth, the responses/outputs at the network vertices constitute an ultrahigh dimensional

vector, that is, the returns of the defined SIFIs. The interest of our analysis lies in

the extremes or higher moments, see Härdle et al. (2016), Fan et al. (2016). Given an

adjacency matrix one is interested in how a stress loaded in one node (or a collection of

these) propagates through a network. The basic idea is seeded in the CoVaR concept of

Adrian and Brunnermeier but needs an extension to a dynamic framework also portraying

node-specific features. In order to study tail event risk transmission in a dynamic context

we propose “Tail Event driven Network Quantile Regression” (TENQR) model, extending

the variation about the mean analysis of Zhu et al. (2017). The technique presented

here is similar to Zhu et al. (2016), but different in the construction of the adjacency

matrix as we will see later. In a TENQR framework, after controlling node-specific
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feature, autoregressive impact and the market-wide covariates, the response of SIFIs

given a range of quantile levels or τ values can be governed by the network factor as

an indicator of the degree of connectedness in the system. The coefficient curve at

multiple percentiles exhibits a downward slope (in European and in the US) to signal an

asymmetric reaction strongly toward to lower quantiles, or a U-shape (in Asia) to indicate

an equivalent importance between lower and upper tail. An investigation by means

of moving window estimation depicts the surface comprised of time-varying coefficient

curves derived from quantile regression, indicating that the network factor contributes

to residual return predictability more profoundly in economic downturn and less in the

rest of periods. The TENQR model does align with the nature of systemic risk that

has (i) large impact, particular in the downside constituting an asymmetric reaction; (ii)

widespread coverage that can be examined through a panel or stack model; (iii) a ripple

effect being detected by an intertemporal investigation.

Fifth, we show the geographic vulnerability with respect to systemic risk. It’s worthwhile

to discuss the geographic distinctions since each region has distinct economic character-

istics, including the structure of its financial system, its position in the global village,

and the nature of its ongoing financial consolidation. These characteristics may define

the geographic frailty of financial risk. For this reason we consider the pooled quantile

regressions for the SIFIs from the US, Europe and Asia. In doing so, one may know

which region is more sensitive to the network factor. With this understanding, the im-

pact caused by a systemic network is likely to be region-specific. Some regions play as

risk transmitters, while others play as risk recipients. For a supervisory purpose, the

region characterized as a main risk transmitter should be closely monitored, while others

receiving risk are suggested to preserve more capital as systemic risk buffer. Besides, the

implied vulnerabilities across regions are in accordance with the results of systemic risk

decomposition.

Having these efforts, we contribute to a “manageable” systemic risk: the supervisors are

able to rank the systemic importance for each SIFIs, to measure the resulting connect-

edness in a system, and to evaluate the impact of network on the conditional quantile of

a response. In the next section we discuss the construction of the adjacency matrix and

its relevance for the systemic risk score. Section 3 contains the details for the network
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quantile regression. Section 4 concludes.

2 Adjacency matrix and systemic risk score

2.1 Financial characteristics of SIFIs

As institutions grow in size, interconnectedness and complexity, they profit by lower

funding cost and economy of scale. However, the moral-hazard problems or so called

“negative externalities” subsequently raise because governments have been forced to use

public funds to support distressed financial institutions, leading to a “too-interconnected-

to-fail” or “too-big-to-fail” situation. Due to the importance of SIFIs for market stability

measuring systemic risk for its interconnectedness and detecting the major contributors

are urgent issues. Hence, we concentrate on 28 global SIFIs (or called G-SIB) listed and

updated in Nov. 2015 by FSB, but disregard two SIFIs, Agriculture Bank of China and

Banque Populaire CE, due to their relative shorter data periods. Daily data such as daily

stock return and implied volatility have been collected ranging from Jan. 2007 to Dec.

2015.

In Table 1, we list the names of the SIFIs with the corresponding index numbers assigned

in this research, and summarize the bank-specific attributes such as debt ratio, firm size,

country where the headquarter is located and the buckets assigned by BCBS. Debt ratio,

a ratio of total debt to total asset, captures the fragility of a bank, while the size, as

total assets, proxies for the bank being too big to fail. In particular, size risk is the most

determinant standalone bank risk in relation to systemic risk (Laeven et al., 2015).

These balance sheet data are available usually yearly. Each just released piece of balance

sheet information enters the TENQR model to obtain results in real time. The bucket

approach is defined in Table 2 of the Basel Committee document Global systemically

important banks: updated assessment methodology and the higher loss absorbency require-

ment, July 2013, which is designed to reduce the moral-hazard problems and systemic risk

by requiring additional common equity loss absorbency as a percentage of risk-weighted

assets that applies to each SIFI from 3.5% (Bucket 5), 2.5% (Bucket 4), 2.0% (Bucket 3),
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1.5% (Bucket 2) to 1% (Bucket 1). Later, the effectiveness of the bucket method can be

justified through the risk decomposition analysis.

2.2 Similarity matrix

Graph theory is very useful to represent and visualize a complexity of interactions of items

interested (Diebold and Yılmaz, 2014). A graph is comprised of a series nodes/vertices

and the edges, referring to connect or join two nodes i, j. In this study, each node is

represented as a particular SIFI, while the edge between two nodes indicates their depen-

dence. The properties of a graph can be expressed by its adjacency matrix A, a square

matrix comprising the elements of aij with value equal to one if an edge connects to node

i and j and zero otherwise. In social networks such as Facebook or Twitter, a friendship

can be naturally defined or it could be a follower-followee relationship. However, for

institutional networks, defining an adjacency matrix is not as intuitive or trivial as what

can be done in individual networks. We may need additional prior knowledge regarding

counterparty linkages such as their contractual obligations, interbank lending and the

assets they hold mutually, which are relatively hard to be gathered in time and are in-

deed very low-frequent data type. Therefore, Diebold and Yılmaz (2014) use daily stock

returns for its forward-looking assessment advantage and being able to reflect the health

of SIFI in time, accordingly they propose a variance decomposition matrix of volatility

as an adjacency matrix. Concentration on volatility falls short though on quantifying the

dynamics of tail event related measures.

This study therefore constructs an adjacency matrix from risk profiles. The risk profile

includes not only Implied Volatility (IV) but also tail risk measures such as Value-at-

Risk (VaR) and Expected Shortfall (ES) to align with the Basel committee’s definition

on market risk. In addition, it is in accordance with the CoVaR concept of Adrian and

Brunnermeier (2016), Härdle et al. (2016) and Hautsch et al. (2014). Compared with

volatility, tail risk measures are more crisis-sensitive.

A pair of SIFIs is connected if their risk profiles share a certain degree of similarity. The

similarity here is defined via a risk profile vector comprised of three risk covariates. More
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Index Name of SIFI Firm Size Debt Ratio Bucket Country

1 JP MORGAN CHASE 21.506 0.261 4 U.S.
2 BANK OF AMERICA 21.446 0.302 2 U.S.
3 BANK OF NEW YORK MELLON 19.499 0.095 1 U.S.
4 CITIGROUP 21.359 0.300 3 U.S.
5 GOLDMAN SACHS 20.624 0.509 2 U.S.
6 MORGAN STANLEY 20.501 0.417 2 U.S.
7 STATE STREET 19.106 0.153 1 U.S.
8 WELLS FARGO 20.980 0.183 1 U.S.
9 ROYAL BANK OF SCTL 21.588 0.252 1 U.K.
10 BARCLAYS 21.604 0.286 3 U.K.
11 HSBC 21.682 0.127 4 U.K.
12 STANDARD CHARTERED 20.136 0.187 1 U.K.
13 BNP PARIBAS 21.684 0.136 3 France
14 CREDIT AGRICOLE 21.489 0.211 1 France
15 SOCIETE GENERALE 21.184 0.139 1 France
16 DEUTSCHE BANK 21.630 0.200 3 Germany
17 UNICREDIT 20.929 0.360 1 Italy
18 ING GROEP 21.156 0.103 1 Netherlands
19 SANTANDER 21.158 0.368 1 Spain
20 NORDEA BANK 20.476 0.326 1 Sweden
21 CREDIT SUISSE GROUP N 20.744 0.339 2 Switzerland
22 UBS GROUP 21.008 0.251 1 Switzerland
23 BANK OF CHINA 21.200 0.160 1 China
24 ICBC 21.508 0.089 1 China
25 CHINA CON.BANK 21.281 0.092 1 China
26 MITSUBISHI UFJ 21.533 0.159 2 Japan
27 MIZUHO 21.247 0.233 1 Japan
28 SUMITOMO.MITSUI 21.044 0.125 1 Japan
Note: Debt ratio, a ratio of total debt to total asset, and bank size, as log value of total assets denominated in
the US dollar, are shown as their mean value during sample period (2007-2015). The buckets assigned by BCBS
correspond to required level of additional common equity loss absorbency as a percentage of risk-weighted assets
from 3.5% (Bucket 5), 2.5%(Bucket 4), 2.0%(Bucket 3), 1.5%(Bucket 2) to 1%(Bucket 1).

Table 1: The overview of SIFIs
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precisely, we calculate the cosine similarity at each time point t:

ρij,t =
X>i,tXj,t

‖Xi,t‖‖Xj,t‖
for j 6= i, i = 1, ..., N, t = 1, ..., T, (1)

where Xi,t = [V aRi,t, ESi,t, IVi,t]> is a risk profile vector in node i comprising its con-

ditional VaR at 95% level, conditional ES at 95% level and average IV from options

markets. The conditional VaR for each i is calculated by first regressing for each calen-

der year (starting 2007) the return vector of a fixed SIFI on the returns of the remaining

SIFIs. In the second step one calculates the 5%-quantile of the residuals of this regression

as conditional VaR for this specific calendar year. Having the conditional VaR estimated,

one obtains the conditional ES as the mean value of residuals return lower than this con-

ditional VaR. “Partialing out” the risk component of other SIFIs is in the spirit of Adrian

and Brunnermeier (2016) and Chan-Lau et al. (2016) to represent the direct connection

among SIFIs. The IV data of each SIFI is collected from Bloomberg at weekly frequency,

and for each SIFI, its IV time series is regressed on the IV from the remaining SIFIs

to get the residual IV. We then calculate the mean value of residual IV as one of risk

covariates.

The risk profile similarity in (1) is analogous to the Pearson correlation coefficient, and

is the dot (scalar or inner) product of the normalized and centered risk profile vectors.

For any pair (i, j), as long as the normalized risk vectors move to the same direction,

the cosine of the angle between them shall be very small, therefore, ρij,t will approach

one (analogous to positive ∆CoVaR or positive tail dependence). Likewise, moving to

reverse directions will result in a larger angle and a smaller or even negative ρij,t if the

angle is higher than π/2 (analogous to negative ∆CoVaR or negative tail dependence).

The appealing feature is that it covers a wide range of tail and volatility risk, especially

if the return distribution is not normal with higher moment components deviating from

the normal moments.

Indeed if the data are jointly normal the tail risk is a function of volatility σ only since

it upscales the standard normal quantiles qα to the VaR as σqα. The same is true for

ES = E(X|X > VaR) and for the implied volatility (see more discussion in Franke et al.

(2015)). In essence: for a normal distribution the three elements of the risk profile are
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(nonlinear) functions of each other. For the more realistic non-normal case we expect

therefore a more precise fingerprint of the risk profile.

The cosine similarity in (1) is displayed in Figure 1. The colors used to represent the

degree of similarity vary from negative (blue) to positive correlation (yellow) in the grids.

We snapshot eight situations at 31.12 based on an annual interval from 2007 to 2014.

Through 2007 to 2009, one observes the similarity moving to a wide coverage of yellow

color to signal an increasing (decreasing) interdependence on positive (negative) side.

During the severest time of system stress, most of financial institutions are tightly tail

connected. As the tension for crisis has gradually decreased, one sees a reduced con-

nectedness in 2010. The European debt crisis threatening the financial markets in 2013,

therefore the resulting similarity matrix turns to more yellow again, especially for a clear

yellow block shown in the European SIFIs (node 11-22). Figure 1 shows that the sim-

ilarity matrix indeed varies over time. The incorporation of this dynamic effect is left

for further research. To promptly capture an approximate dynamics of risk similarity,

the covariates are estimated during a given window size, here we work with the length of

window h = 90 (roughly 1/3 of a year).

2.3 Adjacency matrix

It has to be understood though that the pairwise similarities do not reveal equal severity;

some are profound but some are not. It is not advisable to take all pairwise similarities

into account if they are not beyond a certain threshold, an observation also made by

Härdle et al. (2016),Hautsch et al. (2014) and Barigozzi and Brownlees (2015). Therefore,

to achieve manageable and interpretable structures, dimension reduction techniques are

employed.

The simplest network structure is based on binary weights representing the links between

the nodes, with one (zero) used to represent a link (isolation). Systemic risk, however,

is induced by positive interdependencies, whereas the negative ones are benefiting a risk

diversification. Thereby, the instability indeed is caused by positive rather than negative

interdependence, suggesting an asymmetric impact. The necessity to treat positive and

negative correlations (the entries of the similarity matrix) differently makes therefore
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such a breakdown into a binary structure infeasible. Additional evidence for this fact

provides Figure 3. Here we plot the fraction of positive correlations constituting the

similarity matrices dynamically over time. The figure shows that during the 2008-2009

crisis period a extremely high cutoff correlation is necessary due to systemically strong

interdependence during the crisis. Also in other periods we observe that the fraction

of positive correlations is higher than 50%. Thus the positive and negative correlation

cannot be treated in the same fashion. One needs to create more groups in order to

disentangle positive and negative values.

Here we propose to partition the ordered correlations into three groups. In fact more

groups would be possible, but simplicity of visualization and subsequent analysis in the

TENQR model suggest that three groups seem to do the job here. Highly negative

correlations indicate an adverse comovement of risk profiles. Highly positive similarities

indicate strong interrelationship between the SIFIs, while the correlations close to zero

reflect weak or no linkages. The assignment of the correlations to one of three groups is

based on a classification technique. Algebraically, let ρ = (ρ1, ρ2, ..., ρn)> to be the vector

of ordered similarities and ρ1 < ρ2 < ... < ρn where n = N(N−1)/2. Since the similarities

between the risk profiles are frequently high, we apply Fisher’s Z transformation:

ρ∗j = 1
2 log

(
1 + ρj
1− ρj

)
.

The transformed correlations are approximately normally distributed with the constant

variance 1/(h−3) where h is the sample size. This is different from the setup in Ng (2006),

since we do not concentrate on zero vs. nonzero correlations only but also on the direction

of correlation. The edges of the network are constructed based on large spacings between

two subsequent correlations to indicate a large mean-shift in the original correlations or

a slope shift in the transformed values:

∆j = Φ
(√

h− 3ρ∗j
)
− Φ

(√
h− 3ρ∗j−1

)
.

The objective is to split the sequence of spacings into three subsets using a classification

approach. Let θ1 be the fraction of spacings which corresponds to highly negative corre-

lations and θ2 be the fraction of spacings which separates highly positive correlations. A
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global minimization of the total sum of squared residuals results in:

(θ̂1, θ̂2) = argmin
θ1,2∈[θ,θ̄]

[θ1n]∑
j=1

(∆(j) − ∆̄S)2 +
[θ2n]∑

j=[θ1n]+1
(∆(j) − ∆̄M)2 +

n∑
j=[θ2n]+1

(∆(j) − ∆̄L)2

and

∆̄S = 1
[θ1n]

[θ1n]∑
j=1

∆(j),

∆̄M = 1
[θ2n]− [θ1n]

[θ2n]∑
j=[θ1n]+1

∆(j),

∆̄L = 1
n− [θ2n]

n∑
j=[θ2n]+1

∆(j),

where ∆(j) are ordered spacings and [θn] is the integer part of θn. We have taken

θ = 0.1 = 1 − θ̄ and found stable results for this choice. We obtain the optimal break

fractions (θ̂1, θ̂2) resulting in a minimum total sum of variances from three subgroups to

make the correlations in a given group as homogeneous as possible. Alternatively we

applied a k-means classification and found similar allocations.

Having estimated the break fractions θ1, θ2 at each time point, we classify the similarities

into three groups. The 1st group contains pairs of SIFIs with a very strong positive

dependence. The corresponding cells of the adjacency matrix are coded with ones indi-

cating active links and shown as a white grid in Figure 2, i.e. aij = ah standing for high

positive correlations. The elements of the adjacency matrix for the 2nd group are set

to am reflecting weak or inactive linkages and a black grid in Figure 2. Finally, the 3rd

group contains pairs with high negative correlation and is coded with a` and shown as

a gray grid. Thus distinguishing between direct comovement of risk measures, uncertain

comovement and adverse comovement. The pairwise and symmetric aj,i are the elements

in the adjacency matrices A.

The value ah = 1 reflects a strong comovement and am = 0 the weak links. Finally, a`
should satisfy am < a` < ah, so this is set to a` = 0.5 to reflect an asymmetric impact in a

network system. Other choices of the weights less than one are possible too, but again the

presented results turned out to be stable with respect to the choice of the weights. Note

that a directed graph is not an option in this framework, since the simple correlations do
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not reveal the causal dependence needed for a directed network. Unless the availability

of interbank relationship, estimating A is required in the following TENQR model and

makes network structure feasible and flexible, in comparison with a given A in the work

of Zhu et al. (2016).

2.4 Systemic risk score and risk decomposition

In social networks one might consider nodes/persons with many connections to be impor-

tant or central. In the case that we study here, though we like to identify nodes as central

as they being likely to contribute the most to systemic risk. It may be informative for

the supervisory authority for deciding capital requirements and systemic risk charges to

corresponding SIFIs, see Table 2. The systemic risk scores over years quantify the degree

of systemic risk in the financial system to give an earlier warning signal for policy makers.

The afterward risk decomposition tool conveys the information of the risk contribution

of each SIFIs, which can be ideally regarded as a complement of the bucket approach

proposed by Basel Committee on Banking Supervision (BCBS).

In addition to the notion of interconnectedness, node characteristics, e.g. size of bank or

risk level of bank are also decisive and shall be considered. A bank with bigger market

capitalization is more capable of offering interbank loans to other financial institutions,

describing the situation of “too-big-to-fail”. It’s understood that risk in a connected

network is provoked by either the compromise level of nodes or the degree of their con-

nectedness, or even both. Das (2016) proposes a parsimonious and intuitive metric for

quantifying aggregate risk in a network comprised of related entities, and also for decom-

posing the relative risk contribution of each node on the aggregate network risk.

The adjacency matrix, A, in Figure 2 plays a major role in these two analyses. The

compromise level of nodes is the risk vector for all nodes, one can define this risk vector

e.g. the size of node, the capital allocation on each node (like the weights of a portfolio)

or nodal characteristics used to measure the nodal risk (e.g. debt ratio, credit rating,

probability of default, etc.). Referring to the issue of too-big-to-fail and Basel III reg-

ulation, we define the level of compromises as nodal market capitalization, and have a

compromise vector C = (C1, ..., CN)> ∈ RN . The systemic risk score, S, as a scalar is
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Figure 1: Similarity matrix
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Figure 2: Adjacency Matrix

Note: the highly positive correlation (in white), the highly negative correlation (in gray) and the weak correlation
(in black) are shown in each of calender years. The diagonal cells show a trivial relation and in black as a default
color.
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Figure 3: Fraction of positive correlations in the similarity matrix

the function of the compromise level for all nodes and the connectedness defined by the

adjacency matrix A:

S(C,A) = C>AC (2)

The systemic risk score, S(C,A), will be very useful in ensuing analytic e.g. risk decom-

position technique.

By definition, the risk decomposition technique decomposes the aggregate risk score into

individual risk scores to reflect nodal risk contribution Si, such that S = ∑N
i=1 Si. Due

to that the function S(C,A) is linear homogeneous in the risk vector C, this idea can be

easily carried out by applying the Euler’s equation that decomposes first-order homoge-

nous functions:

S =
N∑
i=1

Si = ∂S

∂C1
C1 + ∂S

∂C2
C2 + · · ·+ ∂S

∂CN
CN (3)

Through Euler’s rule, the aggregate systemic risk score is manageable by ranking nodal

risk contributions. One can focus on the nodes with relative higher risk contributions

arising from its connectedness, ∂S
∂Ci

, or from the risk level Ci. For a regulatory purpose,

the node with a wide range of connectedness shall be prioritized and supervised as it has
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higher risk increment. In a nutshell, this analytic decomposition enables identifying the

source of systemic vulnerabilities.

Table 2 summarizes the results of risk decomposition of each node on annual basis ranging

from 2007 to 2015. The aggregate systemic risk score rises subject to the outbreak of the

US subprime crisis and lasts until end of 2009. As expected, the US SIFIs on average since

2008 contribute the highest systemic risk into the global systemic risk. The aggregate

risk score is an ideal measure to quantify systemic risk. Systemic risk is not easy to

define, but the universally accepted characteristics are that it has large impact, and is

widespread, and has a ripple effect that endangers the financial system. One can find

a dramatic rise in risk score in 2008, indicating that a potential systemic risk emerges

w.r.t the aforementioned characteristics. The systemic risk remained high until 2009 and

declined in 2010 to the historically lowest point to signal the resilient global economy

and effective monetary policies after crisis. In 2013 during the European debt crisis, one

sees that the European SIFIs (nodes 9-22) suffered in terms of their higher systemic risk

contributions. The aggregate systemic risk score increased again and lasted until 2015 as

the consequence of the Chinese stock market crash in summer 2015 caused by insolvent

shadow banks, bursting asset bubbles and indebted local governments.

It is worthwhile to highlight the risk decomposition in relation to the notion of central

nodes. The node with the highest risk contribution is then to be seen as the central node.

Through equation (3), one may attribute the high risk node as the one with a greater

magnitude of compromise or high interconnectedness, or both. Such critical nodes need

immediate attention from regulators. One can e.g. find the node 11 (HSBC) as a central

node in 2010, 2012, 2014 and 2015, while the node 1 (JP. Morgan) becomes a central hub

in the 2008-2009 US subprime crisis. To validate the results, we compare the identified

central SIFIs in this study with the SIFIs assigned to Bucket 4 (highest loss absorbency

group) reported in FSB Nov. 2015. We observe that the risk decomposition analysis

yields an almost identical list for this bucket.

A geographic analysis based on this table documents to which extent systemic risk is

attributed to a particular region where the headquarters of SIFIs are located. Before

2014, the average scores in Europe are slightly larger than that of the US due to the fact

that European banks build the majority of SIFIs. European banks are the largest geo-
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graphic group within the 50 biggest global banks (21 banks from eight different European

countries), while the US only contributes 7 banks. The contribution from the US region

is getting higher after 2014, which may be caused by an increased connectedness between

this region and others as shown in Figure 1. To underscore this point, in the aftermath

of the US subprime crisis, meaningful M&A transactions were few as banks nursed their

balance sheets, stock prices back to health, and the disciplines from regulators. In these

recent years, many US banks pursue long-sought strategic consolidation. The urge to

merge is the confluence of long history of low interest rate resulting in the lowest aver-

age net interest margin according to the FDIC (Federal Deposit Insurance Corporation)

report, higher fixed regulatory costs and rapidly changing technological and financial

innovation.

3 Tail event driven network quantile regression

The previous section provided a descriptive analysis of the SIFI and quantified the con-

nectedness via an adjacency matrix. In this section we present three issues on the network

dynamics. First, it is of interest to relate the response of individual node at a given time

point to the quantified connectedness at the previous time point. Second, it’s very likely

that the return of individual SIFI asymmetrically response the network factor, that is,

the node responses strongly to the network factor when it is under a stress (extremely

negative returns) but may react mildly when it is experiencing an advance. The like-

lihood of simultaneous slumps in the banking industry is potentially greater than that

they boom together, which is a typical feature under systemic risk. Diebold and Yılmaz

(2014) and Xu et al. (2016) find an increased total interconnectedness during the crisis

period, resulting in more fragile financial markets evidence by high comovement, conta-

gion and spillover. By investigating global banking sectors, Dungey and Gajurel (2015)

find a systematic contagion, defined as the potential increased exposure of banks to total

systemic risk, rises in a crisis. Similar findings but through different connectedness mea-

sures are by Adrian and Brunnermeier (2016) and Hautsch et al. (2014). Recalling that

systemic risk is defined through (i) large impact, particular in the downside constituting

an asymmetric reaction; (ii) widespread coverage that can be examined through a panel
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SIFI 2007 2008 2009 2010 2011 2012 2013 2014 2015
1 JP MORGAN 150 217 221 153 158 150 205 225 205
2 BANK OF AMERICA 135 193 207 172 186 172 140 223 149
3 BANK OF NEW YORK MELLON 171 187 149 138 149 138 121 206 64
4 CITIGROUP 158 193 210 171 175 189 207 199 202
5 GOLDMAN SACHS 182 83 168 178 161 152 87 192 187
6 MORGAN STANLEY 175 197 202 160 164 182 200 130 191
7 STATE STREET 164 176 190 160 138 171 188 132 180
8 WELLS FARGO 159 207 149 181 182 156 206 221 193
9 ROYAL BANK OF SCTL 191 201 204 109 168 190 211 198 198
10 BARCLAYS 190 107 219 182 173 160 131 214 204
11 HSBC 171 212 220 187 173 192 210 226 211
12 STANDARD CHARTERED 179 196 208 152 167 141 193 200 121
13 BNP PARIBAS 178 200 211 160 161 190 209 211 155
14 CREDIT AGRICOLE 181 194 183 171 182 142 207 214 130
15 SOCIETE GENERALE 146 188 115 151 162 168 205 193 202
16 DEUTSCHE BANK 202 160 155 169 142 192 182 202 150
17 UNICREDIT 199 199 189 167 110 159 208 119 202
18 ING GROEP 196 125 221 169 156 147 202 85 197
19 SANTANDER 202 216 183 183 174 155 204 155 194
20 NORDEA BANK 191 125 215 154 163 150 202 217 93
21 CREDIT SUISSE GROUP N 193 206 218 117 179 170 205 133 193
22 UBS GROUP 182 129 199 134 156 184 201 198 147
23 BANK OF CHINA 143 185 209 172 166 183 200 193 173
24 ICBC 131 105 212 148 162 188 43 185 197
25 CHINA CON.BANK 151 139 198 149 161 151 114 203 196
26 MITSUBISHI UFJ 148 206 216 163 142 160 206 201 209
27 MIZUHO 146 204 147 103 153 69 140 211 205
28 SUMITOMO.MITSUI 131 201 215 168 148 189 202 111 196

Systemic Risk Score 4746 4938 5430 4419 4514 4588 5032 5193 4942
Average score (US) 162 182 187 164 164 164 169 191 172
Average score (Europe) 186 175 196 157 162 167 198 183 171
Average score (Asia) 142 173 200 150 155 157 151 184 196

Table 2: Systemic risk decomposition
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or stack model; (iii) a ripple effect being detected by an intertemporal investigation, the

TENQR model is proposed for accommodating three definitions. This aspect is beyond

the work of Zhu et al. (2016) who focus on the asymptotics of the involved parameters.

Third, for financial assets, it’s very likely that their returns are subject to the impact of

neighboring assets in the sample industry or geographic region. Modelling residuals for

each asset individually revealed, as we show in the next section interesting insights into

the common behavior of assets from the same geographic region (see Brechmann et al.

(2013)). For this reason we consider the pooled quantile regressions for the SIFIs from the

US, Europe and Asia. By doing so, one may know which region is more vulnerable with

the network factor. With this understanding, the impact caused by a systemic network

is likely to be region-specific.

In a nutshell, the extant research overwhelmingly using the VAR framework requires ex-

post analysis of the network structure and may fail because of curse of dimensionality.

This motivates a parsimonious model which incorporates tail sensitivity, allows for an

asymmetric impact, establishes an intertemproal framework for investigating a ripple

effect and evaluates regional reactions on network risk and the corresponding impulse

response for the network shocks.

3.1 TENQR model

For the aforementioned purposes, we pay particular attention to tail events, like extremes

or high level quantiles. A convenient framework which serves these two objectives is the

quantile autoregression model of Koenker and Xiao (2006). It yields insight into the

interrelation of the involved risk factors, and allows the investigator to explore a range of

conditional quantile functions that links the dependent variable and the covariates in a

continuous and smooth manner. However, this triggers problems if the number of nodes

increases, and it happens if one would like to estimate the VaR/CoVaR via quantile re-

gression. Using an index mimicking the financial system Adrian and Brunnermeier (2016)

is an alternative solution, though it is simple but lacks a network insight. Besides, the

network in the financial system is time-varying with different degree of interconnectedness

over time. To tackle this we introduce a network factor involving the adjacency matrix
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as proposed in Zhu et al. (2017) and Zhu et al. (2016) to represent the financial system

in a more practical way.

We first opt for a quantile regression for the pooled residuals from (4) with the explanatory

variables given by the proposed network factor. For each node i at time t we denote the

return by Yit. The SIFI dynamics is first approximated by:

Yit = α0 + αi1Yi,t−1 + α>i2Wt + α>i3Sit + vit, for i = 1, ..., N, t = 1, ..., T (4)

where Yi,t−1 is the autoregressive term and accounts for persistence and missing variables.

Wt represents the market-wide covariates used to capture systematic factors, while Sit
stands for node-specific characteristics. Equation 4 is estimated using simple OLS either

for each node individually or in a stacked form for groups of nodes. Two market-wide

factors, namely the volatility index VIX proxied for the perceived market sentiment and

the TED rate proxied for perceived credit risk are chosen. The node-specific variables are

the log firm size and the debt ratio computed as the total debt to assets ratio. Practically,

large and well-capitalized banks are more likely to issue interbank loans to a large body of

counterparties, creating more interconnected interbank relationship. In this sense, their

returns relative to those of smaller SIFIs are bounded by this special treatment. The

debt ratio, namely leverage ratio, is an indicator for the tendency of financial distress.

All measures are denominated in USD.

The residuals, v̂it, from (4) can be seen as “residual returns” corrected for indirect impact

from the market-wide covariates, persistence and nodal characteristics. The network

effect may account for the missing covariates shown in (4), in other words, these residuals

may contain information on the network. The sets Rr with r = 1, 2, 3 contain the i-

indices of SIFIs for each of the regions US, Europe, and Asia. The random coefficients

model which is a building block for the quantile regression is

v̂it = βr0(Ut) + βr1(Ut)
∑
j∈Bi

mi(Yj,t−1) for i ∈ Rr. (5)

The coefficients βrp(Ut) for p = 0, 1 are unknown function mappings [0, 1] → R, Bi is a

set of neighboring nodes for node j, and mi(Yj,t−1) is a function of the neighboring nodes

of node i. Furthermore, {Ut} is a sequence of iid standard uniform random variables. In
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terms of the above objectives βr1 stands for the network effect. Since if the right hand

side of (5) is monotonous in Ut, we can state the conditional quantile function of v̂it as

Qv̂it
(τ |It−1) = βr0(τ) + βr1(τ)

∑
j∈Bj

mi(Yj,t−1) for i ∈ Rr, (6)

where It−1 denotes the information on all SIFIs observable at t−1. The coefficients depend

on τ and allow for different impacts of the corresponding covariates on the quantiles of the

response variable. Functions mi(Yj,t−1) quantify the connectedness of the nodes within

the network and we use the adjacency matrix to aggregate the network impact

∑
j∈Bi

mi(Yj,t−1) = 1
|Bi|

N∑
j=1

aij,t−1Yj,t−1. (7)

Equation (7) measures the average impact from i-th node neighbors and can be inter-

preted as “network factor”. The network factor quantifies the average of its connected

neighbors for each node in the system, which may contribute to the return prediction

for the next day. Besides, this approach has clear advantages compared to full vector

(quantile)-regressions: in large networks the number of the unknown parameters may ex-

ceed the number of observations. The extension to time-varying parameters is technically

demanding and requires specific assumptions on the data generating process. In the setup

advocated here we estimate the relationships within the network exogenously and treat

the elements of the adjacency matrix as given. For notational convenience we collect the

two parameters for each region r in vector θr(τ) ∈ R2, i.e. θr(τ) = {βr0(τ), βr1(τ)}. The

estimation follows by minimizing the objective function as in Koenker and Xiao (2006):

V̂r(τ) = min
θr(τ)∈R2

T∑
t=1

∑
i∈Rr

ρτ
{
v̂it − x>i,t−1θr(τ)

}
for τ ∈ (0, 1). (8)

Here ρτ (u) = u · {τ − I(u < 0)} is an asymmetric loss function and x>i,t−1 collects all

relevant explanatory variables. We denote the solution of the optimization problem with

θ̂r(τ). Algorithms to solve (8) can be found on http://www.quantlet.de and in Tran

et al. (2016). The conditional quantile of v̂it can be estimated by Q̂v̂it
(τ |It−1) = x>i,t−1θ̂r(τ)

for an appropriate value of r = 1, 2, 3. Note that the individual and the pooled models

do satisfy the assumptions of the standard quantile regression and we can rely on the
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classical asymptotic theory. We do not take into account the estimation error in the

residuals and treat these as given quantities.

The slope function of the estimated quantile regression is of key interest for the evalu-

ation of the network effects. For the purpose of statistical inference we summarize the

asymptotic properties of the estimator. Following, for example, Koenker and Bassett

(1978) we obtain for each region in Rr:

√
T |Rr|d−1/2

0 d1{β̂r1(τ)− βr1(τ)} ∼ N(0, τ(1− τ)),

with

d0 = lim
T→∞

(T |Rr|)−1
T∑
t=1

∑
i∈Rr

x2
i1,t−1

d1 = lim
T→∞

(T |Rr|)−1
T∑
t=1

∑
i∈Rr

[fi{F−1
i (τ)}]x2

i1,t−1.

This holds assuming that (a) Fi have continuous density fi{F−1
i (τ)} bounded away from

zero and infinity near τ for all r; (b) d0 and d1 exist and are finite. We choose a specifi-

cation which postulates a homoscedastic model for observations stemming from a single

SIFI, but heterescedastic if we move from one SIFI to another. The final estimator of

the variance is of sandwich-type. Estimation of the nuisance parameter fi{F−1
i (τ)} was

heavily tackled in the literature and discussed in details, for example, in Koenker (2005).

Here we opt for the Hendricks-Koenker estimator

f̂i{F−1
i (τ)} = T−1

T∑
t=1

2hT
x>i,t−1{θr(τ + hT )− θr(τ − hT )} −→ fi{F−1

i (τ)} as hT → 0.

The practical choice of the bandwidth can use the Gaussian approximation (Koenker

(2005)).

For the purpose of inferences we employ the above asymptotic result in the Bahadur

representation

√
T |Rr|d−1/2

0 d1{β̂r1(τ)− βr1(τ)}/
√
τ(1− τ)⇒ B(τ) for τ ∈ (ε, 1− ε),

where B(τ) = W (τ) − τW (1) is a one-dimensional Brownian bridge and W (τ) is a
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standard Brownian motion.

To evaluate the significance of the network factor consider the restricted variant of (8)

with β̂r1(τ) ≡ 0. Following Koenker and Machado (1999) we consider a Wald-type process

with
T |Rr|d2

1
τ(1− τ)d0

β̂2
r1(τ)⇒ Q2

η(τ)(τ) for τ ∈ (ε, 1− ε),

where η(τ) = T |Rr|d1
τ(1−τ)d0

β2
r1(τ) and Q2

η(τ)(τ) is a-noncentral version of the squared Bessel

process with the noncentrality function η(τ). For fixed τ this collapses to a noncentral

χ2 distribution with one degree of freedom. If the null hypothesis is that the network

factor has no impact on the residual returns, we can use the above results to verify this

hypothesis relying on

sup
τ

T |Rr|d2
1

τ(1− τ)d0
β̂2
r1(τ) L−→ sup

τ
Q2(τ),

with Q2(τ) = |B(τ)|/
√
τ(1− τ). The quantiles of the term on the RHS can be found

numerically or in Andrews (1993).

It is important to stress a variety of applications of the above statements. First, they

allow us to test the significance of the network factor in the quantile regression framework.

Second, we can construct uniform confidence bands for the quantile effect of the network

and to assess its nonlinearity or deviations from an ordinary linear regression. Third, we

can compare the difference between the quantile curves for different geographic regions

more rigidly from statistical perspective.

3.2 Estimation results

To estimate the above model we collect daily data on the SIFIs returns for the period from

01.01.2007 till 31.12.2015. For the regression (4),Wt = (V IXt, TEDt) is the market-wide

vector comprising the VIX and the TED spread. The node-specific variables are the log

firm size and the debt ratio computed as the total debt to assets ratio available at annual

frequency. To integrate it into (4) we keep the annual value constant on every day during

the corresponding calender year. Both variables naturally reflect the stability and the
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riskiness of each SIFI. All measures are denominated in USD.

const Yt−1 VIX TEDrate assets debt ratio
US -0.0267 -0.0626∗∗∗ -0.0221∗∗∗ 0.0485∗∗ 0.0030 -0.1108
Europe 1.2054 0.0485∗∗∗ -0.0183∗∗∗ 0.0080 -0.0564 -0.0595
Asia 1.9158 0.0145 0.0023 -0.0973∗∗∗ -0.0861 -0.2937

Table 3: Estimation results for pooled regressions of SIFI returns on lagged return,
market- and node-specific covariates for each geographic region. ∗∗∗ and ∗∗ stand for 1%
and 5% levels of significance.

●
●

●

●

●●
●

●

● ●●●●●
●● ●●

● ●
●●

●●

●
●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●
●●

●
●●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●● ●

●

●

●●●●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●
●●

● ●

●
●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

● ●
●

●
●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●
●

●
●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●●●

●
●

●

●
●

●

●

●

●●●

●

●
●● ●

●

●

●

●

●

●
●

●
●

●●●●
● ●●

●●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●●

●●
●● ●

●

●●
●

●
●

●●●●
●

●
●●

●

●

●●●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●●●●

● ● ●

●

●
●●

●●●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●●

●

●
●

●●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●
●

●●

●

●
●●

●

●●
●●

●

●●

●●
●

●
●●

●

●
●●

●

●
●

●

●

●
●

●●

●

●
●

●●
●●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

● ●●

●

● ●

●
●

●
●

●

●●

●

●

●

●
●

●●

●
●

●●
●●●●●

●

●
●● ●

●

●
●

●●●

●

●

●

●
● ●●●

●●●
●

●

●

●● ●●
●

●
●

●
●

●
●

●

●●
● ●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●
●●

●

●●

●

●

●

●
●

●

●●

●●

●

●
● ●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

● ●●

●

●

●

●

●
●

●●

●

●●

●

●

●

● ●

●●
●

●

●

●

●

●●●
●●●●●

●●
●

●

●
●

●

●●

●

●
●

●●
●●

●

●
●

●
●●

●

●
●

●

●●●

●

●

●
●

●
●●

●
●

●
●

●
●

●

●●

●
●

● ●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●
● ●

●●

●●●
●

●

●
● ●

●

●
●

●
●

●
●● ●●●●

●
●

●
●

● ●●
●

●

●●● ●

●

●

●

●
●

●

●

●
●●●

●

●

● ●

●
●

●
●●

●

●●●

●●

●

●●●

●
●

●
●

●
●

●
●●

●

●

●●

●

●

●
●●

●
●

● ●

●

●●●
●

●● ●
●

●●●

●
●

●

●
●●●●

●●

●

●

●
● ●●

●●

●
●

●

●

●
●●●

●
●

●

●●

●
●●●

●
●

●

●

●
●●

●

●

●

●
●

●●
●

●

●

● ●
●

●
●

●

●

●

●

●● ● ● ●●

●
●

●●

●

● ● ● ●
●

●
●

●

●
●

●
●●

●

●● ●
●

●
●

●

●

●

●

●

●
●

●●
●

● ●●

●

●
●

●
●

●

●
●

●● ●

●

●

●
●●

●
●●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●●

●
●

●
●

●
●●

●●
●●●

●
●

●●
●

●● ● ●

●

●
●●●●●●●
●

●
●

●●
●●●●

●●
●

●

●

●
●

●
●

●
●

● ●● ●
● ●

●●●
●

●
●

●
●

● ●

●
●

●●

●

●●

●
●●●

●

●
●

●

●

●●
●

●

●●●
●●

●
●●●●

●

●

● ● ●
●

●

●
● ●● ●

●
●

●

●
●●

●
●●●●●
●

●

●
●●

●
●●
●

●

●

● ●●
●●●●●

●
●●

●●

●

●
●●

●
●

●

●
●

● ●
●

●
●

●
●

●
●

●
●

●●

●

●●
●

●
●●● ●

●

●●
●

●
● ● ●

●

●●●●
●

●
●●●

●●●

●

●
●

●

●

● ●
●

●● ●

●●
●

●

●
●

●
●

●
●●●

●
●●

● ●

●
●●●

● ●

●●
●

●
●●

●
●

●
●

●●
●●

●●●
●●

●●

●
●●●

● ● ●●
●●

●
●

●

●
●● ●●●

●
●●

●
●

●
●

● ●

●

●

●

●●
●●●● ●

●
●

●●

●
●

●
●

●
●●

●●
●

●●●
●

●
●

●
●●

●● ●●● ●●
●

●
●●

●● ●
●

●● ●
●

●

●
●●●

●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

● ●
●

●

● ●

●
●

●

●
●● ●

●
●

●
●●●●

●
● ●

●
●●●●

●
●

●

●

●●

●

●

●●●

●
●

●
●

●
●●● ●●

●
●●

●●

●

●

●●
●

●●

●
●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●●
●

●●●●

●

●

●

●

●

●

●

● ●
●

●

●●●
● ●

●

●
●

●
●●

●● ●●●
●●

●
●

●

●

●
●●●

●
●

●
●

●

●●

●
●

●● ●
●

●
●●

●
●●●

●

●
●●

●●
●

●

●

●
●

●
●

●●
●

●
●

●

●●

●●
●

●

●●
●

●●●
●

●
●●●

●●
● ●●

●

●
●●

●
●

●
●

●● ●
●●

●

●
●

●●●●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●●●

●

●

●

●
●

●

●

●●●●●●

●

●

●
●

●
●

●●
●●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●
●

●
●

● ●● ●
●

●

●●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●●●
●

●●●

−3 −2 −1 0 1 2 3

−
5

0
5

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

JP.MORGAN.CHASE

●●
●

●

● ●

●

●

●●

●

●●

●

●
●

●

●

●●●

●

●●

●●

●

●●●

●
●●

●
●●

●

●●●
●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●
●●●

●

●

●

●

●●
●

●
●

●
●

●

●●●

●
●

●

●
●

●●
●

●

●

●●
●

●

●
●●

●
●

●
●

●●

●
●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●● ●●●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●●
●

●●

●
● ● ●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●
●

●

●

● ●●

●

●●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●
●

●●
●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●●
●●

●
●

●
●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●●

●

●
●

●●●

●●

●

●

●●●
●

●
●●

●

●●

●●

●

●

●
●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●
●●

●
●●

●

●

●

●
●

●

●

●

●
●

●
●

●●●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●
●●●

●

●

●

●●●
●●●

●

●●●●
●

●●

●

● ●

●

●

●

●

●●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●
●●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●●
●

●

●●●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●●●

●

●

●●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●●
●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●● ●
●●

●

●

●

●●

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4
6

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

UNICREDIT

●

●

●●

●

●

●●
●

●●●
●●

● ●●
●

●

●
●

●
●●

●

●
●●

●●

●

●
●

●

●
●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●
●●

● ●
●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●●●●

●
●

●

● ●
●●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●
● ●
●

●●
●●

●

●

●
●

●

●
●

●

●

●●●
●

●

●

● ●
●

●●

●●
●

●

●

●●
●

●

●
● ●

●

● ●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●
● ●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●●

●

●●
●●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

● ●
●●

●

●
●

●
●●

●
● ●

●

●
●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●●●
●

●

●●
●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●●●

●

● ●●●●

●
●

●

● ●
●●

●
●●●●

●●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
● ●●●

● ●
●

●

● ●

●●

●

●●
●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●
●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●●

●

●
●

● ●
●

●

●
●

●●

●
●

●●
●

●●
●

●

●

●

●

●
●

●
●

●
● ●●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●

●
●

●●●
●

●

●

●
●

●●●●
●

●

●
●●

●

●

●

●
●

●

●
●

●●
● ●●

●
●●

●

●●●●●
●

●
● ●

●●●

●

●● ● ●●
●

●

●

●

● ●

● ●
●

●
●

●●

●●●
●●

●

●●

●

●
●

●

●

●

● ●

●
●

●

●●
● ●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●●
●

●
●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●
●●

●
●

●
●

●
●● ●

●
●

●

●
●

●
●

●

●

●

●●
● ●

●
●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●●

●●
●

●

●

●

●

●
●

●●●●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●●

●

● ●
●

●●

●
●

●

●

●

●
●●●

●●

●

●●

●

●

●
● ●

●

●

●●

●

●
●

●
●

●

●
●

●●●●●

●

●
●

●

●
●

●
● ●●

●

●
●

●
●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●
●

●●
●

●

●

●
●

●●
●●

●

●●●
●●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●
● ●

●
●

●
●

●●

●
●

●

●●●
●●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

● ●●
●

● ●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●
●

●●
●●●

●
●●

●

●

●

● ●

●

● ●

●

●
●

●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●

●●
●

●●
●●

●●

●

●
●

●
●●

●
●

●
●●

●
●

●

●
●●

●

●●

●
●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

● ●
●

●

●●

●

●

●

●●●
●

●
●

●

●●●
●

●
●

●

●

●
●

●

●

●

●●
●●

●●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●
●

●●●
●●

●

●●

●
●

● ●

●

●
●

● ●●●
●

●

●
●

●

●
●●●

●

●

●
●

●
●

●

● ●●

●

●
●

●●

●●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●● ●
●

●●●●
●

●

●

●
●

●
●

●

●
●

● ●●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●●●

● ●
●

●
●

●●
●●

●●

●

●

●●●
●

●●●

● ●
●

●
●●

●●
●

●●
●● ●

●

●●
●●

●

●●
●

●

●

●●
●

●

●

● ●
●●

●● ●●●

●

●

●

●●
●

●
●●●

●

●●●

●

●

●

●
●

●

●●
●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●
●●

●

●

●

●

●
●

●●

●

●●

●

●

●●

● ●●●●●●
●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●●
●●

●
●

●●

●

●

●
●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●●

●

●●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●
●●●●

●

●●

●
●

●

●● ●●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●●

●●

●

●●

●
●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●
●

●
●

●
●●●

●
●

●●●

●●

●
●

●
●

● ●●
●

●

●●

−3 −2 −1 0 1 2 3
−

5
0

5
10

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

BANK.OF.CHINA.

Figure 4: QQ plots of the absolute residuals from the individual regressions for JP Mor-
gan, Unicredit and Bank of China and the Gaussian distribution (full sample estimation)

The residual returns v̂it from (4) exhibit heavy tails. Figure 4 shows as an example the

normal QQ plots of the standardized residuals from the individual linear regressions for

0.2 0.4 0.6 0.8

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

JP.MORGAN.CHASE

τ1

0.2 0.4 0.6 0.8

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

UNICREDIT

τ1

0.2 0.4 0.6 0.8

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

BANK.OF.CHINA.

τ1

τ2=0.1 τ2=0.5 τ2=0.9

Figure 5: Quantilograms of residuals from the individual regressions 4 for JP Morgan,
Unicredit and Bank of China with the 10%, 50% and 90% quantiles of network factor
(full sample estimation)
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JP Morgan (in the US), Bank of China (in Asia) and Unicredit (in Europe). We conclude

that we have to deal with a heavy tailed distribution, suggesting a modeling approach

with a focus on the tails. To assess the relationship between these extreme residuals and

the network factor we consider the cross-quantilogram suggested by Han et al. (2016)

equation (2). Therefore we consider the first order cross-quantilogram between v̂it and

the network factor based on the full set of the SIFIs. Figure 5 shows the correlation of

different quantiles of the residual returns for JP Morgan, Bank of China and Unicredit

with the 10%, 50% and 90% quantiles of the network factor defined in (7). Since the curve

for τ2 = 0.5 is almost flat, JP Morgan is indifferent to neutral news from the market. The

reaction to other network quantiles is higher for the 90%-quantile compared to the 10%-

quantile. Unicredit rarely reacts to good shocks from the network factor in its turbulent

times (low quantiles). Neutral news are, however, treated as negative shocks since the

50% and 10% quantile curves are very close. For Bank of China (BOC) all correlations

are shifted upward, implying stronger sensitivity of the Asian companies to the network.

We provide the estimation results for the pooled regressions by grouping the SIFIs w.r.t

their geographic origins. More specifically, we stack the returns and covariates of the

SIFIs within each region together and estimate the resulting joint model. Furthermore,

to model the causal impact of the network factor on the residuals we fit the quantile regres-

sion for each region as described in the previous section. The network factor takes all SIFI

companies into account, but the dependent variable contains information only on SIFIs

from a given region. Note that our interest focuses on the effect of the predictor, namely

network factor, on the tails of residual return distribution, and compare the sensitivity

or predictability of it at multiple percentiles. For this purpose, we resolve (8) separately

for each of the q desired quantile levels, τ1 < ... < τq, to get β̂1r(τ) = (β̂1r(τ1), ..., β̂1r(τq)).

As can be seen in Figure 6, the predictability attributed to network factor varies with the

quantile levels presenting a downward, upward or U-shape coefficient curve and the re-

gions where the headquarters of SIFIs are located to demonstrate geographic distinctions

regarding the structure of financial system.

For Asia, one sees a U-shape coefficient curve w.r.t desired quantile levels, whereas the

European and the US SIFIs exhibit a monotonic coefficient curve. In addition, the Asian

SIFIs exhibit the highest sensitivity to the network factor among the three regions. What
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is very peculiar for these SIFIs is that the extent of sensitivity is almost the same for

positive and negative shocks coming the network. Thus a high positive network factor

induces positive shocks of the same magnitude as a high negative factor can provoke.

Asian banks built up their borrowing from the international interbank market in the

early 1990s, suffered though in the Asian Crisis (1997-1998). At that time, foreign banks

curtailed their lending to Asian banks as evidence accumulated of their deteriorating

loan quality. Since 2002, Asian banks have again begun to increase their borrowing from

banks abroad and reached a peak of borrowing by 2006 before the US crisis (McCauley

and Zukunft, 2008). The vulnerability of Asian SIFIs may therefore be caused by a cur-

tailment of funding in the international interbank market, e.g. the US banks withdrawing

the funding during the US subprime crisis and the European banks being forced to reduce

their lending during the European debt crisis. Asian banks tend to suffer from global

bank liquidity and credit crunches, on the other hand, they may gain from an improving

function of global banking system, forming a U-shape coefficient curve in the Asian case.

A monotonically downward curve shown in the US and Europe indicates an asymmetric

response to the network factor, namely a high negative network factor induces more

profound negative shocks than the same magnitude of positive factor can provoke. The

asymmetric impact of the network factor is in line with a number of research with a focus

on crisis. The joint evidence of comovement, contagion and spilllover is ascribed to an

increased total interconnectedness in a financial system. See more discussion in Dungey

and Gajurel (2015) and Diebold and Yılmaz (2014). It’s worthwhile to note that our

proposed quantile-varying estimators not only link bank returns and the global interbank

network in a continuous and smooth manner but also avoid a dichotomous design (e.g.

negative returns v.s. positive returns, crisis v.s. non-crisis period, lower volatility v.s.

higher volatility) used in previous studies.

The 95% confidence bands in Figure 6 reveal several important facts. First, the impact

of the network factor significantly differs from one geographic region to another. Thus

the interpretation in the above paragraphs is statistically supported. Second, the zero

value is not covered by the confidence bands indicating a significant impact factor. The

horizontal lines visualize the slope parameter of a simple linear regression of residual

returns on the network factor. Since the bands do not cover the constant coefficients,
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it can be inferred that the variation in the quantile curves is again significant. Thus we

conclude that the use of quantile regression is justified and shows statistically significant

results.

Figure 6: Slopes from the quantile regressions of the residuals from different geographic
regions on the network factor (full sample estimation). The coloured area shows the 95%
confidence band. The horizontal lines depict the parameters of the corresponding linear
regressions.

To assess the time variation of the coefficient curves we perform a moving window estima-

tion of the regional quantile regression with a 90-day window size. The resulting surfaces

are shown in Figure 7. The surfaces for each region is comprised of the curves in Figure

6 estimated at each time point, in other words, they summarize the variation of quantile

curves over time. In the Asian surface, one observes a high level of curves during the US

crisis but the curves turn to slump afterward. The U-shape alike curves are evenly dis-

tributed over time but become more concave during the outbreak of turbulent episodes.

For the US case, one rather observes a monotonic shape of curve from higher to lower

quantile values in the majority of sample period. The US SIFIs trigger and transmit
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credit crunch to one of the European or Asian counterparties, through the counterparties

outside of the US the risk spreads widely and even amplifies in Europe and Asia in 2009.

That may explain a stronger reaction in Asia and Europe in 2008-2009. Besides, a rel-

atively bigger bank size in Asia and Europe renders a high risk level (“too-big-to-fail”),

as a consequence, these banks account for most of systemic risk. The downward curves

from lower to upper quantile are very promising in 2014, presenting a spike alike in the

lower quantiles. To tease it out, one can refer to Table 2 again where the US region

contributes the most in 2014. If some nodes are suffering, their regional neighbors will be

infected observed by the adjacency matrix. Not surprisingly, the US SIFIs’ returns will

react to this connectedness. Also, the European SIFIs react strongly and asymmetrically

during the outbreak of European debt crisis. By focusing on the surface at 10% quantile,

it appears that it varies with market turbulence or systemic tension accordingly.

In a nutshell, the TENQR method documents the importance of a network factor on

the tail distribution and addresses an asymmetric response w.r.t the network factor.

An investigation by moving window estimation visualizes the surface comprised of time-

varying coefficient curves derived from quantile regression, indicating that the network

factor contributes to return predictability a lot in economic downturn but less in the rest

of periods. The implied vulnerabilities across regions are in accordance with the results

of systemic risk decomposition. Having these efforts, we contribute to a “manageable”

systemic risk. The supervisors are able to identify the central SIFIs with higher risk

contributions, to measure the resulting connectedness in a system, and to evaluate the

impact of network on the conditional quantile of a response.

4 Conclusion

There is no doubt that systemic risk depends on the interdependence and the joint dy-

namics of SIFIs in stress situations. The simultaneous stress on the financial system is

proposed to be modeled in a network topology. The possible overstretching of positions

i.e. the likeliness of common tail events is addressed in a quantile regression framework.

The choice of the adjacency matrix is based on a similarity measure of a risk profile. This

risk profile is composed of conditional VaR and ES (given the returns of other SIFIs)
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together with the reported IV. The graph adjacency matrix is calculated from this sim-

ilarity matrix by using a Fisher Z-transform based classification algorithm. Finally we

fit the TENQR model to capture risk propagation and autoregressive network effect.

The network geometry allows us to identify the risk contribution and the dominant risk

contributors.

The network coefficient is analyzed regionally. In Asia, one obtains a U-shape curve

(as a function of τ , the stress level). The EU and US SIFIs show a monotonic shape

but all exhibit the same sensitivity to the network factor. The Asian region though

reacts to a high positive network factor with a positive shock, and also reacts to negative

shocks coming from a negative network factor. This may be attributed to the lending

policy in the early of 1980’s follows by the Asian crisis 1997-1998. In summary, the

TENQR model lets us isolate a network factor and thereby allows us to study the joint

dynamics in a stress situation of the financial system. The implied vulnerabilities across

SIFIs and regions are calculated via a risk decomposition analysis. The network topology

of simultaneous events provides precise insight into the management of systemic risk.

Supervisors may identify central SIFIs with higher risk contributions and predict their

impact in the interconnected financial system.
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Figure 7: Moving window estimation of β1(τ) in the quantile regression (6) for the three geographic regions using the last 90 observations.
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