Theses
Topics for Theses
- Using posterior predictive checks with semistructured deep distributional regression
- Efficient estimation of distributional regression models using HMC based on normalizing flows
- Predicting revenue streams of small and medium-sized enterprises
- Understanding and implementing predictive information criteria for Bayesian models
- Clustering with Non-Uniform Random
- Forests Testing for Rational Bubbles in Financial Markets
- Counterfactual Analysis
- Asymptotic behaviour of the posterior in overfitted (deep) mixture models
- Posterior concentration rates for Bayesian high-dimensional sparse additive models
- Deep distributional learning
- Standard errors of Variational Inference
- Uncertainty quantification for deep learning
- Bayesian stacking approaches
- Bayesian neural network structures
- Deep Gaussian process modelling
- Multiple Imputation for Panel Data
- Using Stacking to Average Distributional Regression Models
- Modelling Income Inequality with Semiparametric Transformation Models
- Bayesian Nonparametric Conditional Density Estimators
- Distributional Joint Modelling
- Approximations of Normalizing Constants in Doubly-Intractable Likelihoods
- Effect Fusion of Categorial Predictors
- Effect Selection in Semiparametric Quantile Regression Models
- Measuring the Explained Variance in Structured Additive Distributional Regression
- Comparisons and Implementation of Non-Local Shrinkage Priors
- Predictive information criteria from a Bayesian perspective
...get in touch with us: stat@wiwi.hu-berlin.de
Completed Theses
Master Theses
- Felix Germaine (2022): Interpretable modelling of ICU patients remaining length-of-stay distribution using tabular patient data, clinical notes and irregularly spaced clinical measurements
- Jana Kleinemeier (2021): Using Variational Inference to Estimate Structred Additive Distributional Regression Models
- Yuliya Vandysheva (2021): Die Modellierung der COVID-19 Fallzahlen in Abhängigkeit von Strukturdaten zu Wetter und Bevölkerung in Berlin
- Jost von Petersdorff-Campen (2021): Copula Regression for Discrete Data - An Application to Covid-19
- Chris Kolb (2021): Application of Deep Distributional Regression
- Per Joachims (2021): Uncertainty Quantification with Bayesian Neural Networks
- Clara Hoffmann (2021): Marginally Calibrated Posterior Densities for End-to-End Learning in Autonomous Driving
- Silvia Ventoruzzo (2021): On the Role of Weather in Predicting Online Sales of Different Product Categories
- Saifoul Alom (2021): E-Mail-Klassiffzierung unten Anwendung von Machine-Learning zur Optimierung des Kundendienstes
- Michael Schimpke (2021): Sentiment-Optimised Translation: An Approach for Multilingual Sealing of Pre-Trained Sentiment Classiffers
- Jakub Kondek (2021): Classiffcation of Empathic and Non-Empathic Emails using Prototypical Networks
- Lukas Moedl (2021): The RODEO Approach for Nonparametric Density Estimation
- Anna Elisabeth Riha (2021): Hyperpriorsensitivity of Bayesian Wrapped Gaussian Processes with an Application to Wind Data
- Jil Kollmus-Heege (2020): Dynamic Prediction in Flexible Bayesian Additive Joint Models
- Kang Yang (2020): Deep Generalised Additive Regressive Model for Location, Scale and Shape using Tensorflow
- Paulina Kurowska (2020): Bayesian Variable Selection Approach in Additive Quantile Regression
- Patricia Craja (2019): Fraud Detection in Financial Statements using Deep Learning based Natural Language Processing
- Yinan Wu (2019): Bayesian Adaptive Lasso for Zero Inflated Count Model and Overdispersion
- Jerome Bau (2019): Context-aware Sentence Generation from Keywords
- Lukas Kemkes (2019): Comparison and combination of extractive and abstractive techniques for machine text summarization
- Max Reinhardt (2019): Uncertainty in Deep Neural Networks
- Jan Reher (2019): Purchase Prediction with Topic Models Using Variational Inference
- Andrii Zakharov (2019): Development of a Customer Insolvency Prediction Model following the Cross-Industry Standard Process for Data Mining (CRISP-DM)
- Stanislaus Stadlmann (2017): bamlss.vis: An R Package to Interactively Analyze and Visualize Bayesian Additive Models for Location, Scale and Shape (BAMLSS) Using the Shiny Framework
- Hannes Riebl (2017): Multivariate Quantile Residuals in Copula Regression: Model Evaluation and Selection
- Manuel Carlan (2016): Bayesian Variable Selection in Semiparametric Regression
- Paul Wiemann (2015): Statistische Analyse von Advice-Taking
- Manuel Vonrueti (2015): Hyperparameterwahl einer neuartigen Spike und Slab Priori für Verteilungsregression
- Anastasia Gorbunova (2015): Statistische Analyse von länderspezifischen Energiemixen
Bachelor Theses
Julius Freidank (2021): Vergleich von Vorhersagemodellen zu Stornierungen von Hotelbuchungen
Yuliya Vandysheva (2021): Die Modellierung der COVID-19 Fallzahlen in Abhängigkeit von Strukturdaten zu Wetter und Bevölkerung in Berlin
Elisabeth Krawczyk (2019): Comparing applicability of prevalent Clustering Algorithms for Document Clustering
Hannes Riebl (2014): Power Law Verteilungen in Generalisierten Additiven Modellen für Lokation, Skala und Form
Philipp Hanheide (2013): Messung der Armuts-Vulnerabilität