Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼

Humboldt-Universität zu Berlin - Statistics

Dr. Matthias Eckardt


  •   E-mail   m.eckardt@hu-berlin.de
  •   Phone / Fax
      +49 30 2093-99474 / +49 30 2093-99591
  •   Office / Office hours:
      SPA1, 406 / upon agreement

Mail address

Humboldt-Universität zu Berlin
School of Business and Economics
Chair of Statistics
Unter den Linden 6
10099 Berlin

Research Interest

General Framework for Multivariate Spatial / Spatio-Temporal Data

Vector Marked / Multivariate Functional Marked Spatial Point Processes

Partial Characteristics of Multivariate Spatial Processes

Spatial / Spatio-Temporal Graphical Modelling

Statistical Analysis of Network Data/ Trajectories

Stochastic Processes over Structured/ Complex Domains

Causal Inference

Classification/ Machine Learning


Eckardt, M, Kappner, K and Wolf, N (2020). Covid-19 across European
regions: The role of border controls.
Covid Economics, 42:94-111.

Selb, R, Jansen, K, Eckardt, M, Tamminga, T, Dudareva, S, Gassowski, M, Graeber, I, Guhl, E, Heuer, D, and Buder, S (2020). External quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in primary laboratories in Germany. BMC Infectious Diseases, 20(1):514-524.

Meurs, L, Lempp, FS, Lippmann, N, Trawinski, H, Rodloff, AC, Eckardt, M, et al (2020). Intestinal colonization with extended-spectrum beta-lactamase producing Enterobacterales (ESBL-PE) during long distance travel: A cohort study in a German travel clinic (2016–2017). Travel Medicine and Infectious Disease, 33:101521.

Eckardt, M and Mateu, J (2020). Second-order and local characteristics of network intensity functions. TEST, https://doi.org/10.1007/s11749-020-00720-4

Neufeind, J, Betsch, C, Eckardt, M, Habersaat, KB, and Wichmann, O (2020). Barriers and Drivers to Adult Vaccination Among Family Physicians - Insights for Tailoring the Immunization Program in Germany. Vaccine, 38(27):4252-4262.

Mateu, J and Eckardt, M (2020). Discussion to the paper: Graphical models for extremes, by Engelke, S and Hitz, AS. Journal of the Royal Statistical Society B, 82(3):1-38.

Eckardt, M and Mateu, J (2019). Partial characteristics for marked spatial point processes. Environmetrics, 30(6):e2565.

Eckardt, M and Mateu, J (2019). Analysing Multivariate Spatial Point Processes with Continuous Marks: A Graphical Modelling Approach. International Statistical Review, 87(1):44-67.

Eckardt, M and Mateu, J (2018). Point Patterns Occurring on Complex  Structures in Space and Space-Time: An Alternative Network Approach. Journal of Computational and Graphical Statistics, 27(2):312-322.                  

Eckardt, M and Mateu, J (2017). Analysing highly complex and highly structured point patterns in space. Spatial Statistics, 22:296-305.

Eckardt, M, Brettschneider, C, van den Bussche, H, König, H, and Group, MS (2017). Analysis of Health Care Costs in Elderly Patients with Multiple Chronic Conditions Using a Finite Mixture of Generalized Linear Models Health Economics, 26(5):582-599.

Mateu, J and Eckardt, M (2017). Discussion to the paper: Sparse graphs using exchangeable random measures, by Caron, F. & Fox, E.B. Journal of the Royal Statistical Society B, 79(5).

Eckardt, M (2016). Reviewing Graphical Modelling of Multivariate Temporal Processes In: Analysis of Large and Complex Data, ed. by Wilhelm, Adalbert F.X. and Kestler, Hans A., pp. 221–229, Cham, Springer.

Eckardt, M, Freuling, C, Müller, T, and Selhorst, T (2015). Spatio-temporal analysis of fox rabies cases in Germany 2005-2006. Geospatial Health, 10(1).

Dwinger, S, Dirmaier, J, Herbarth, L, König, H, Eckardt, M, Kriston, L, Bermejo, I, and Härter, M (2013). Telephone-based health coaching for chronically ill patients: study protocol for a randomized controlled trial Trials, 14(1):337.

König, H, Leicht, H, Bickel, H, Fuchs, A, Gensichen, J, Maier, W, Mergenthal, K, Riedel-Heller, S, Schäfer, I, Schön, G, Weyerer, S, Wiese, B, van den Bussche, H, Scherer, M, Eckardt, M, and group, ftMs (2013). Effects of multiple chronic conditions on health care costs: an analysis based on an advanced tree-based regression model. BMC Health Services Research, 13(1):219.

Rapp, K, Cameron, ID, Becker, C, Kleiner, A, Eckardt, M. , König, H. and Klenk, J. (2013). Femoral fracture rates after discharge from the hospital to the community. Journal of Bone Mineral Research, 28:821-827.


Eckardt, M and Mateu, J. Structured network regression for spatial point patterns.

Eckardt, M and Mateu, J. A spatial dependence graph model for multivariate spatial hybrid processes.

Eckardt, M and Mateu, J. Partial and semi-partial measures of spatial associations for multivariate lattice data.

Eckardt, M and Mateu, J. Detecting structural interrelations in
multivariate spatially aggregated outcomes.

Eckardt, M and Mateu, J. Quantile analysis of second-order point process characteristics

Eckardt, M and Mateu, J. Spatial dependence graph models for functional  spatial data.

Eckardt, M, Gonzales, JA and Mateu, J. Graphical modelling and partial characteristics of spatio-temporal point processes.

Charles, T, Eckardt, M, Karo, B, Haas, W, and Kröger, S.
Seasonality in extra-pulmonary tuberculosis notifications in Germany - a time series analysis

Conference proceedings

Eckardt, M (2015). Quantile Graphical Modelling of Point Processes. 12th Workshop on Stochastic Models, Statistics and Their Applications. Wroclaw

Eckardt, M and Mateu, J. (2016). Structural approaches towards multivariate spatial and spatio-temporal point processes: Graphical modelling and network approaches for complex patterns. Conference: METMA VIII: Proceedings of the 8th International Workshop on Spatio-Temporal Modelling, Valencia

Working paper

Stahlschmidt, S, Eckardt, M and Härdle, WK (2014). Expectile Treatment Effects: An efficient alternative to compute the distribution of treatment effects.  SFB 649 Discussion Paper 2014-059. Humboldt-Universität zu Berlin, Berlin, Germany


Eckardt, M (2016). Spatial dependence graph models for the exploratory analysis of multivariate spatial point processes.